Skip to main content

Malignant Transforming Mechanisms of Human Papillomavirus

  • Chapter
  • First Online:
  • 2833 Accesses

Abstract

HPVs transforming activities represent the viral replication strategy that is driven to replicate viral genomes and to establish long-term maintenance in a tissue. High-risk-HPV-infected cells and carcinogenesis progression are terminal events, since cancer cells contain integrated HPV genomes and do produce viral progeny. High-risk HPV (HR-HPV) genome integration indeed represents a consequence of HPV E6/E7- induced genomic instability. HR-HPV E6 and E7 proteins critically contribute to viral life cycle and transforming activity. HR-HPV E7 proteins bind to pRB and decreased efficiency. HR-HPV E6 proteins efficiently interact with TP53 and promote for TP53 degradation. High-risk HPVs can frequently persist for decades in an infected host cell at a low number of copies. One of the events of HPV-induced carcinogenesis is the HPV genome integration into a host chromosome, and it is probably a failed viral mechanism. High Risk-HPV E6 proteins and E7 contribute to immortalization of primary human epithelial cells by induction of telomerase activity. Data evidences suggest that microbial dysbiosis is associated with malignant transformation, but future discussion and direction for microbiome in cancer research (oncobioma) and particularly in HPV-associated human cancer could be evaluated as causative causes that modulate initiation, progression, or cancer metastasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pfister H, Fuchs PG. Anatomy, taxonomy and evolution of papillomaviruses. Intervirology. 1994;37:143–9.

    Article  CAS  PubMed  Google Scholar 

  2. Orth G, Jablonska S, Breitburd F, Favre M, Croissant O. The human papillomaviruses. Bull Cancer. 1978;65:151–64.

    CAS  PubMed  Google Scholar 

  3. Bodily J, Laimins LA. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 2011;19(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  4. Moody CA, Laimins LA. Human Papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60.

    Article  CAS  PubMed  Google Scholar 

  5. Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA. Identification of the 6 integrin as a candidate receptor for papillomaviruses. J Virol. 1997;71:2449–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stubenrauch F, Laimins LA. Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol. 1999;9:379–86.

    Article  CAS  PubMed  Google Scholar 

  7. McCance DJ, Kopan R, Fuchs E, Laimins LA. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A. 1988;85:7169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.

    Article  CAS  PubMed  Google Scholar 

  9. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505.

    Article  CAS  PubMed  Google Scholar 

  10. Jones DL, Münger K. Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol. 1997;71:2905–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenberger S, De-Castro Arce J, Langbein L, Steenbergen RD, Rösl F. Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc Natl Acad Sci U S A. 2010;107(15):7006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Münger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989;63:4417–21.

    PubMed  PubMed Central  Google Scholar 

  13. Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20:7888–98.

    Article  PubMed  Google Scholar 

  14. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 1999;18:2449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peralta-Zaragoza O, Bermudez-Morales V, Gutierrez-Xicotencatl L, Alcocer-Gonzalez J, Recillas-Targa F, Madrid-Marina V. E6 and E7 oncoproteins from human papillomavirus type 16 induce activation of human transforming growth factor beta1 promoter throughout Sp1 recognition sequence. Viral Immunol. 2006;19(3):468–80.

    Article  CAS  PubMed  Google Scholar 

  16. Bello JO, Nieva LO, Paredes AC, Gonzalez AM, Zavaleta LR, Lizano M. Regulation of the Wnt/β-catenin signaling pathway by human papillomavirus E6 and E7 oncoproteins. Viruses. 2015;7(8):4734–55.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  18. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.

    Article  CAS  PubMed  Google Scholar 

  19. Astudillo de la Vega H, Benítez-Bribiesca L. Is it possible to create human malignant cells in the laboratory? Gac Med Mex. 2000;136(2):173–4.

    CAS  PubMed  Google Scholar 

  20. Thorland EC, Myers SL, Gostout BS, Smith DI. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene. 2003;22:1225–37.

    Article  CAS  PubMed  Google Scholar 

  21. Ziegert C, Wentzensen N, Vinokurova S, Kisseljov F, Einenkel J, Hoeckel M, von Knebel Doeberitz M. A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques. Oncogene. 2003;22:3977–84.

    Article  CAS  PubMed  Google Scholar 

  22. McBride AA, Romanczuk H, Howley PM. The papillomavirus E2 regulatory proteins. J Biol Chem. 1991;266:18411–4.

    CAS  PubMed  Google Scholar 

  23. Demeret C, Desaintes C, Yaniv M, Thierry F. Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J Virol. 1997;71:9343–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A. 1992;89:5799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skiadopoulos MH, McBride AA. Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin. J Virol. 1998;72:2079–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. You J, Croyle JL, Nishimura A, Ozato K, Howley PM. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell. 2004;117(3):349–60.

    Article  CAS  PubMed  Google Scholar 

  27. Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM. Structural and translational analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987;61:962–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995;92:1654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alazawi W, Pett M, Arch B, Scott L, Freeman T, Stanley MA, Coleman N. Changes in cervical keratinocyte gene expression associated with integration of human papillomavirus 16. Cancer Res. 2002;62:6959–65.

    CAS  PubMed  Google Scholar 

  30. Goodwin EC, DiMaio D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci U S A. 2000;97:12513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hopman AH, Smedts F, Dignef W, Ummelen M, Sonke G, Mravunac M, Vooijs GP, Speel EJ, Ramaekers FC. Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol. 2004;202(1):23–33.

    Article  PubMed  Google Scholar 

  32. Kessis TD, Connolly DC, Hedrick L, Cho KR. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene. 1996;13:427–31.

    CAS  PubMed  Google Scholar 

  33. Reidy PM, Dedo HH, Rabah R, Field JB, Mathog RH, Gregoire L, Lancaster WD. Integration of human papillomavirus type 11 in recurrent respiratory papilloma-associated cancer. Laryngoscope. 2004;114(11):1906–9.

    Article  PubMed  Google Scholar 

  34. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314(6006):111–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hudelist G, Manavi M, Pischinger KI, Watkins-Riedel T, Singer CF, Kubista E, Czerwenka KF. Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. Gynecol Oncol. 2004;92(3):873–80.

    Article  CAS  PubMed  Google Scholar 

  36. Ferber MJ, Montoya DP, Yu C, Aderca I, McGee A, Thorland EC, Nagorney DM, Gostout BS, Burgart LJ, Boix L, Bruix J, McMahon BJ, Cheung TH, Chung TK, Wong YF, Smith DI, Roberts LR. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene. 2003;22(24):3813–20.

    Article  CAS  PubMed  Google Scholar 

  37. Ferber MJ, Thorland EC, Brink AA, Rapp AK, Phillips LA, McGovern R, Gostout BS, Cheung TH, Chung TK, Fu WY, Smith DI. Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma. Oncogene. 2003;22(46):7233–42.

    Article  CAS  PubMed  Google Scholar 

  38. Butler D, Collins C, Mabruk M, Leader MB, Kay EW. Loss of Fhit expression as a potential marker of malignant progression in preinvasive squamous cervical cancer. Gynecol Oncol. 2002;86(2):144–9.

    Article  CAS  PubMed  Google Scholar 

  39. Segawa T, Sasagawa T, Yamazaki H, Sakaike J, Ishikawa H, Inoue M. Fragile histidine triad transcription abnormalities and human papillomavirus E6-E7 mRNA expression in the development of cervical carcinoma. Cancer. 1999;85(9):2001–10.

    CAS  PubMed  Google Scholar 

  40. Wentzensen N, Vinokurova S, von Knebel DM. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004;64(11):3878–84.

    Article  CAS  PubMed  Google Scholar 

  41. zur Hausen H. Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol. 1999;9:405–11.

    Article  PubMed  CAS  Google Scholar 

  42. Klausner RD. The fabric of cancer cell biology—weaving together the strands. Cancer Cell. 2002;1:3–10.

    Article  CAS  PubMed  Google Scholar 

  43. Zimonjic D, Brooks MW, Popescu N, Weinberg RA, Hahn WC. Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Res. 2001;61:8838–44.

    CAS  PubMed  Google Scholar 

  44. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 1999;9:M57–60.

    Article  CAS  PubMed  Google Scholar 

  45. Schütze DM, Krijgsman O, Snijders PJ, Ylstra B, Weischenfeldt J, Mardin BR, Stütz AM, Korbel JO, de Winter JP, Meijer CJ, Quint WG, Bosch L, Wilting SM, Steenbergen RD. Immortalization capacity of HPV types is inversely related to chromosomal instability. Oncotarget. 2016;7:37608–21. doi:10.18632/oncotarget.8058.

    PubMed  PubMed Central  Google Scholar 

  46. Habermann JK, Hellman K, Freitag S, Heselmeyer-Haddad K, Hellstrom AC, Shah K, Auer G, Ried T. A recurrent gain of chromosome arm 3q in primary squamous carcinoma of the vagina. Cancer Genet Cytogenet. 2004;148:7–13.

    Article  CAS  PubMed  Google Scholar 

  47. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54.

    Article  CAS  PubMed  Google Scholar 

  48. Duensing S, Münger K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol. 2003;77:12331–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Riley RR, Duensing S, Brake T, Münger K, Lambert PF, Arbeit JM. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 2003;63:4862–71.

    CAS  PubMed  Google Scholar 

  50. Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109:157–62.

    Article  CAS  PubMed  Google Scholar 

  51. Duensing S, Duensing A, Crum CP, Münger K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 2001;61:2356–60.

    CAS  PubMed  Google Scholar 

  52. Thomas JT, Laimins LA. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol. 1998;72:1131–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vinokurova S, Wentzensen N, Kraus I, Klaes R, Driesch C, Melsheimer P, Kisseljov F, Dürst M, Schneider A, von Knebel DM. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res. 2008;68(1):307–13.

    Article  CAS  PubMed  Google Scholar 

  54. Hopman AH, Theelen W, Hommelberg PP, Kamps MA, Herrington CS, Morrison LE, Speel EJ, Smedts F, Ramaekers FC. Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer. J Pathol. 2006;210(4):412–9.

    Article  CAS  PubMed  Google Scholar 

  55. Blasco MA, Hahn WC. Evolving views of telomerase and cancer. Trends Cell Biol. 2003;13:289–94.

    Article  CAS  PubMed  Google Scholar 

  56. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396:84–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ocadiz R, Sauceda R, Cruz M, Graef AM, Gariglio P. High correlation between molecular alterations of the c-myc oncogene and carcinoma of the uterine cervix. Cancer Res. 1987;47(15):4173–7.

    CAS  PubMed  Google Scholar 

  58. Abba MC, Laguens RM, Dulout FN, Golijow CD. The c-myc activation in cervical carcinomas and HPV 16 infections. Mutat Res. 2004;557(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dürst M, Croce CM, Gissmann L, Schwarz E, Huebner K. Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci U S A. 1987;84(4):1070–4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A. 2003;100(14):8211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McMurray HR, McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol. 2003;77(18):9852–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gewin L, Galloway DA. E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol. 2001;75(15):7198–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Dakic A, Zhang Y, Dai Y, Chen R, Schlegel R. HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A. 2009;106(44):18780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004;18(18):2269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fu B, Quintero J, Baker CC. Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res. 2003;63(22):7815–24.

    CAS  PubMed  Google Scholar 

  66. McMurray HR, McCance DJ. Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J Virol. 2004;78(11):5698–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van Doorslaer K, Burk RD. Association between hTERT activation by HPV E6 proteins and oncogenic risk. Virology. 2012;433(1):216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oltvai ZN, Barabási AL. Systems biology. Life's complexity pyramid. Science. 2002;298(5594):763–4.

    Article  CAS  PubMed  Google Scholar 

  69. Hughes TR, Robinson MD, Mitsakakis N, Johnston M. The promise of functional genomics: completing the encyclopedia of a cell. Curr Opin Microbiol. 2004;7(5):546–54.

    Article  CAS  PubMed  Google Scholar 

  70. Mazurek S, Zwerschke W, Jansen-Dürr P, Eigenbrodt E. Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene. 2001;20(47):6891–8.

    Article  CAS  PubMed  Google Scholar 

  71. Mazurek S, Eigenbrodt E. The tumor metabolome. Anticancer Res. 2003;23(2A):1149–54.

    CAS  PubMed  Google Scholar 

  72. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80.

    Article  CAS  PubMed  Google Scholar 

  73. Poirier LA. The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction. J Nutr. 2002;132(8 Suppl):2336S–9S.

    CAS  PubMed  Google Scholar 

  74. Ames BN, Wakimoto P. Are vitamin and mineral deficiencies a major cancer risk? Nat Rev Cancer. 2002;2(9):694–704.

    Article  CAS  PubMed  Google Scholar 

  75. Wainfan E, Kilkenny M, Dizik M. Comparison of methyltransferase activities of pair-fed rats given adequate or methyl-deficient diets. Carcinogenesis. 1988;9(5):861–3.

    Article  CAS  PubMed  Google Scholar 

  76. Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer. 1994;74(3):893–9.

    Article  CAS  PubMed  Google Scholar 

  77. Hsieh LL, Wainfan E, Hoshina S, Dizik M, Weinstein IB. Altered expression of retrovirus-like sequences and cellular oncogenes in mice fed methyl-deficient diets. Cancer Res. 1989;49(14):3795–9.

    CAS  PubMed  Google Scholar 

  78. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10):988–95.

    CAS  Google Scholar 

  79. Flatley JE, Sargent A, Kitchener HC, Russell JM, Powers HJ. Tumour suppressor gene methylation and cervical cell folate concentration are determinants of high-risk human papillomavirus persistence: a nested case control study. BMC Cancer. 2014;14:803. doi:10.1186/1471-2407-14-803.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rösl F, Arab A, Klevenz B, zur Hausen H. The effect of DNA methylation on gene regulation of human papillomaviruses. J Gen Virol. 1993;74(Pt 5):791–801.

    Article  PubMed  Google Scholar 

  81. Thain A, Jenkins O, Clarke AR, Gaston K. CpG methylation directly inhibits binding of the human papillomavirus type 16 E2 protein to specific DNA sequences. J Virol. 1996;70(10):7233–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bhattacharjee B, Sengupta S. CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2. Virology. 2006;354(2):280–5.

    Article  CAS  PubMed  Google Scholar 

  83. Cripe TP, Alderborn A, Anderson RD, Parkkinen S, Bergman P, Haugen TH, Pettersson U, Turek LP. Transcriptional activation of the human papillomavirus-16 P97 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and AP-1-responsive modules. New Biol. 1990;2(5):450–63.

    CAS  PubMed  Google Scholar 

  84. Offord EA, Beard P. A member of the activator protein 1 family found in keratinocytes but not in fibroblasts required for transcription from a human papillomavirus type 18 promoter. J Virol. 1990;64(10):4792–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Velazquez Torres A, Gariglio Vidal P. Possible role of transcription factor AP1 in the tissue-specific regulation of human papillomavirus. Rev Invest Clin. 2002;54(3):231–42.

    PubMed  Google Scholar 

  86. Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti AC, Sarker S, Dey D, Saluja D, Das B. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience. 2011;9:525.

    Google Scholar 

  87. Rösl F, Das BC, Lengert M, Geletneky K, zur Hausen H. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription. J Virol. 1997;71(1):362–70.

    PubMed  PubMed Central  Google Scholar 

  88. Prusty BK, Das BC. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer. 2005;113(6):951–60.

    Article  CAS  PubMed  Google Scholar 

  89. Date AA, Destache CJ. Natural polyphenols: potential in the prevention of sexually transmitted viral infections. Drug Discov Today. 2016;21(2):333–41.

    Article  CAS  PubMed  Google Scholar 

  90. Schüle R, Rangarajan P, Yang N, Kliewer S, Ransone LJ, Bolado J, Verma IM, Evans RM. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci U S A. 1991;88(14):6092–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Batova A, Danielpour D, Pirisi L, Creek KE. Retinoic acid induces secretion of latent transforming growth factor beta 1 and beta 2 in normal and human papillomavirus type 16-immortalized human keratinocytes. Cell Growth Differ. 1992;3(11):763–72.

    CAS  PubMed  Google Scholar 

  92. Borger DR, Mi Y, Geslani G, Zyzak LL, Batova A, Engin TS, Pirisi L, Creek KE. Retinoic acid resistance at late stages of human papillomavirus type 16-mediated transformation of human keratinocytes arises despite intact retinoid signaling and is due to a loss of sensitivity to transforming growth factor-beta. Virology. 2000;270(2):397–407.

    Article  CAS  PubMed  Google Scholar 

  93. Sizemore N, Choo CK, Eckert RL, Rorke EA. Transcriptional regulation of the EGF receptor promoter by HPV16 and retinoic acid in human ectocervical epithelial cells. Exp Cell Res. 1998;244(1):349–56.

    Article  CAS  PubMed  Google Scholar 

  94. Rorke EA, Zhang D, Choo CK, Eckert RL, Jacobberger JW. TGF-beta-mediated cell cycle arrest of HPV16-immortalized human ectocervical cells correlates with decreased E6/E7 mRNA and increased p53 and p21(WAF-1) expression. Exp Cell Res. 2000;259(1):149–57.

    Article  CAS  PubMed  Google Scholar 

  95. Bartsch D, Boye B, Baust C, zur Hausen H, Schwarz E. Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells. EMBO J. 1992;11(6):2283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Berlin Grace VM, Niranjali Devaraj S, Radhakrishnan Pillai M, Devaraj H. HPV-induced carcinogenesis of the uterine cervix is associated with reduced serum ATRA level. Gynecol Oncol. 2006;103(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  97. Wadler S, Schwartz EL, Haynes H, Rameau R, Quish A, Mandeli J, Gallagher R, Hallam S, Fields A, Goldberg G, McGill F, Jennings S, Wallach RC, Runowicz CD. All-trans retinoic acid and interferon-alpha-2a in patients with metastatic or recurrent carcinoma of the uterine cervix: clinical and pharmacokinetic studies. New York Gynecologic Oncology Group. Cancer. 1997;79(8):1574–80.

    Article  CAS  PubMed  Google Scholar 

  98. Weiss GR, Liu PY, Alberts DS, Peng YM, Fisher E, Xu MJ, Scudder SA, Baker Jr LH, Moore DF, Lippman SM. 13-cis-retinoic acid or all-trans-retinoic acid plus interferon-alpha in recurrent cervical cancer: a Southwest Oncology Group phase II randomized trial. Gynecol Oncol. 1998;71(3):386–90.

    Article  CAS  PubMed  Google Scholar 

  99. Keefe KA, Schell MJ, Brewer C, McHale M, Brewster W, Chapman JA, Rose GS, McMeeken DS, Lagerberg W, Peng YM, Wilczynski SP, Anton-Culver H, Meyskens FL, Berman ML. A randomized, double blind, Phase III trial using oral beta-carotene supplementation for women with high-grade cervical intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev. 2001;10(10):1029–35.

    CAS  PubMed  Google Scholar 

  100. Meyskens Jr FL, Surwit E, Moon TE, Childers JM, Davis JR, Dorr RT, Johnson CS, Alberts DS. Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J Natl Cancer Inst. 1994;86(7):539–43.

    Article  PubMed  Google Scholar 

  101. Braud AC, Gonzague L, Bertucci F, Genre D, Camerlo J, Gravis G, Goncalves A, Moutardier V, Viret F, Maraninchi D, Viens P. Retinoids, cisplatin and interferon-alpha in recurrent or metastatic cervical squamous cell carcinoma: clinical results of 2 phase II trials. Eur Cytokine Netw. 2002;13(1):115–20.

    CAS  PubMed  Google Scholar 

  102. Ash C, Mueller K. Manipulating the Microbiota. Science. 2016;352(6285):530–1.

    Article  CAS  PubMed  Google Scholar 

  103. Thomas RM, Jobin C. The microbiome and cancer: is the ‘Oncobiome’ mirage real? Trends Cancer. 2015;1(1):24–35.

    Article  PubMed  PubMed Central  Google Scholar 

  104. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15.

    Article  PubMed  Google Scholar 

  105. Duff R, Rapp F. Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol. 1971;8(4):469–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Galloway DA, McDougall JK. The oncogenic potential of herpes simplex viruses: evidence for a ‘hit-and-run’ mechanism. Nature. 1983;302(5903):21–4.

    Article  CAS  PubMed  Google Scholar 

  107. Dhanwada KR, Garrett L, Smith P, Thompson KD, Doster A, Jones C. Characterization of human keratinocytes transformed by high risk human papillomavirus types 16 or 18 and herpes simplex virus type 2. J Gen Virol. 1993;74(Pt 6):955–63.

    Article  CAS  PubMed  Google Scholar 

  108. Fang L, Ward MG, Welsh PA, Budgeon LR, Neely EB, Howett MK. Suppression of human papillomavirus gene expression in vitro and in vivo by herpes simplex virus type 2 infection. Virology. 2003;314(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  109. DiPaolo JA, Woodworth CD, Popescu NC, Koval DL, Lopez JV, Doniger J. HSV-2-induced tumorigenicity in HPV16-immortalized human genital keratinocytes. Virology. 1990;177(2):777–9.

    Article  CAS  PubMed  Google Scholar 

  110. Tran-Thanh D, Provencher D, Koushik A, Duarte-Franco E, Kessous A, Drouin P, Wheeler CM, Dubuc-Lissoir J, Gauthier P, Allaire G, Vauclair R, Dipaolo JA, Gravitt P, Franco E, Coutlée F. Herpes simplex virus type II is not a cofactor to human papillomavirus in cancer of the uterine cervix. Am J Obstet Gynecol. 2003;188(1):129–34.

    Article  PubMed  Google Scholar 

  111. Skeate JG, Porras TB, Woodham AW, Jang JK, Taylor JR, Brand HE, Kelly TJ, Jung JU, Da Silva DM, Yuan W, Kast WM. Herpes simplex virus downregulation of secretory leukocyte protease inhibitor enhances human papillomavirus type 16 infection. J Gen Virol. 2016;97(2):422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Doniger J, Muralidhar S, Rosenthal LJ. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev. 1999;12:367–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kashanchi F, Araujo J, Doniger J, Muralidhar S, Hoch R, Khleif S, Mendelson E, Thompson J, Azumi N, Brady JN, Luppi M, Torelli G, Rosenthal LJ. Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene. 1997;14:359–67.

    Article  CAS  PubMed  Google Scholar 

  114. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10:803–21.

    Article  CAS  PubMed  Google Scholar 

  115. Szostek S, Zawilinska B, Kopec J, Kosz-Vnenchak M. Herpesviruses as possible cofactors in HPV-16-related oncogenesis. Acta Biochim Pol. 2009;56(2):337–42.

    CAS  PubMed  Google Scholar 

  116. Leonard CJ, Berns KI. Adeno-associated virus type 2: a latent life cycle. Prog Nucleic Acid Res mol Biol. 1994;48:29–52.

    Article  CAS  PubMed  Google Scholar 

  117. Meyers C, Alam S, Mane M, Hermonat PL. Altered biology of adeno-associated virus type 2 and human papillomavirus during dual infection of natural host tissue. Virology. 2001;287:30–9.

    Article  CAS  PubMed  Google Scholar 

  118. Prasad CK, Meyers C, Zhan DJ, You H, Chiriva-Internati M, Mehta JL, Liu Y, Hermonat PL. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity. Virology. 2003;314:423–31.

    Article  CAS  PubMed  Google Scholar 

  119. Bantel-Schaal U. Growth properties of a human melanoma cell line are altered by adenoassociated parvovirus type 2. Int J Cancer. 1995;60:269–74.

    Article  CAS  PubMed  Google Scholar 

  120. Walz C, Schlehofer JR. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17. J Virol. 1992;66:2990–3002.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Schlehofer JR, Heilbronn R. Infection with adeno-associated virus type 5 inhibits mutagenicity of herpes simplex virus type 1 or 4-nitroquinoline-1-oxide. Mutat Res. 1990;244:317–20.

    Article  CAS  PubMed  Google Scholar 

  122. Al-Daraji WI, Smith JH. Infection and cervical neoplasia: facts and fiction. Int J Clin Exp Pathol. 2009;2(1):48–64.

    PubMed  Google Scholar 

  123. Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr. 2003;32:527–33.

    Article  PubMed  Google Scholar 

  124. Moore JS, Rahemtulla F, Kent LW, Hall SD, Ikizler MR, Wright PF, Nguyen HH, Jackson S. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro. Virology. 2003;313:343–53.

    Article  CAS  PubMed  Google Scholar 

  125. Yeaman GR, Howell AL, Weldon S, Demian DJ, Collins JE, O'Connell DM, Asin SN, Wira CR, Fanger MW. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: Regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection. Immunology. 2003;109:137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vernon SD, Hart CE, Reeves WC, Icenogle JP. The HIV-1 tat protein enhances E2dependent human papillomavirus 16 transcription. Virus Res. 1993;27:133–45.

    Article  CAS  PubMed  Google Scholar 

  127. Buonaguro FM, Tornesello ML, Buonaguro L, Del Gaudio E, Beth-Giraldo E, Giraldo G. Role of HIV as cofactor in HPV oncogenesis: in vitro evidences of virus interactions. Antibiot Chemother. 1994;46:102–9.

    Article  CAS  PubMed  Google Scholar 

  128. Greenhead P, Hayes P, Watts PS, Laing KG, Griffin GE, Shattock RJ. Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. J Virol. 2000;74:5577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miller CJ, Shattock RJ. Target cells in vaginal HIV transmission. Microbes Infect. 2003;5:59–67.

    Article  CAS  PubMed  Google Scholar 

  130. Wu Z, Chen Z, Phillips DM. Human genital epithelial cells capture cell-free human immunodeficiency virus type 1 and transmit the virus to CD4+ cells: Implications for mechanisms of sexual transmission. J Infect Dis. 2003;188:1473–82.

    Article  PubMed  Google Scholar 

  131. Garbuglia AR, Piselli P, Lapa D, Sias C, Del Nonno F, Baiocchini A, Cimaglia C, Agresta A, Capobianchi MR. Frequency and multiplicity of human papillomavirus infection in HIV-1 positive women in Italy. J Clin Virol. 2012;54(2):141–6.

    Article  PubMed  Google Scholar 

  132. Strickler HD, Burk RD, Fazzari M, Anastos K, Minkoff H, Massad LS, Hall C, Bacon M, Levine AM, Watts DH, Silverberg MJ, Xue X, Schlecht NF, Melnick S, Palefsky JM. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst. 2005;97(8):577–86.

    Article  PubMed  Google Scholar 

  133. Clarke B, Chetty R. Postmodern cancer: the role of human immunodeficiency virus in uterine cervical cancer. Mol Pathol. 2002;55(1):19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G. Inhibition of apoptosis in chlamydia-infected cells: Blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med. 1998;187:487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Perfettini JL, Hospital V, Stahl L, Jungas T, Verbeke P, Ojcius DM. Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia. Biochimie. 2003;85:763–9.

    Article  CAS  PubMed  Google Scholar 

  136. Lorenzato M, Clavel C, Masure M, Nou JM, Bouttens D, Evrard G, Bory JP, Maugard B, Quereux C, Birembaut P. DNA image cytometry and human papillomavirus (HPV) detection help to select smears at high risk of high-grade cervical lesions. J Pathol. 2001;194:171–6.

    Article  CAS  PubMed  Google Scholar 

  137. Melsheimer P, Klaes R, von Knebel-Doeberitz M, Bastert G. Prospective clinical study comparing DNA flow cytometry and HPV typing as predictive tests for persistence and progression of CIN I/II. Cytometry. 2001;46:166–71.

    Article  CAS  PubMed  Google Scholar 

  138. Prozialeck WC, Fay MJ, Lamar PC, Pearson CA, Sigar I, Ramsey KH. Chlamydia trachomatis disrupts N-cadherin-dependent cell–cell junctions and sequesters β-catenin in human cervical epithelial cells. Infect Immun. 2002;70:2605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Moscicki AB, Burt VG, Kanowitz S, Darragh T, Shiboski S. The significance of squamous metaplasia in the development of low grade squamous intraepithelial lesions in young women. Cancer. 1999;85:1139–44.

    Article  CAS  PubMed  Google Scholar 

  140. Zhong G, Liu L, Fan T, Fan P, Ji H. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon γ-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J Exp Med. 2000;191:1525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hook CE, Telyatnikova N, Goodall JC, Braud VM, Carmichael AJ, Wills MR, Gaston JSH. Effects of Chlamydia trachomatis infection on the expression of natural killer (NK) cell ligands and susceptibility to NK cell lysis. Clin Exp Immunol. 2004;138:54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mavoungou E, Poaty-Mavoungou V, Touré FS, Sall A, Delicat A, Yaba P, Mandeme Y, Nabias R, Lansoud-Soukate J. Impairment of natural killer cell activity in Chlamydia trachomatis infected individuals. Trop Med Int Health. 1999;4:719–27.

    Article  CAS  PubMed  Google Scholar 

  143. Stephens RS. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 2003;11:44–51.

    Article  CAS  PubMed  Google Scholar 

  144. Zhu H, Shen Z, Luo H, Zhang W, Zhu X. Chlamydia Trachomatis Infection-Associated Risk of Cervical Cancer: A Meta-Analysis. Medicine (Baltimore). 2016;95(13):e3077.

    Article  Google Scholar 

  145. Castle PE, Giuliano AR. Genital tract infections, cervical inflammation, and antioxidant nutrients — Assessing their roles as human papillomavirus cofactors. J Natl Cancer Inst Monogr. 2003;31:29–34.

    Article  Google Scholar 

  146. Gravitt PE, Castle PE. Chlamydia trachomatis and cervical squamous cell carcinoma (Letter to the Editor). JAMA. 2001;285:1703–4.

    Article  CAS  PubMed  Google Scholar 

  147. Smith JS, Bosetti C, Muñoz N, Herrero R, Bosch FX, Eluf-Neto J, Meijer CJLM, van den Brule AJC, Franceschi S, Peeling RW. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case–control study. Int J Cancer. 2004;111:431–9.

    Article  CAS  PubMed  Google Scholar 

  148. Touati E, Michel V, Thiberge JM, Wuscher N, Huerre M, Labigne A. Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology. 2003;124(5):1408–19.

    Article  CAS  PubMed  Google Scholar 

  149. Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, Hong KM, Kim HK, Kim MK. The association of uterine cervical microbiota with an increased risk for cervicalintraepithelial neoplasia in Korea. Clin Microbiol Infect. 2016;21(7):674.e1–9.

    Article  Google Scholar 

  150. Munoz D, Cantu D, Gonzalez A, Meneses A, Mohar A, Astudillo-de la Vega H, Nguyen B. A phase II trial of the use of 4, 4'-dihydroxybenzophenone-2, 4-dinitrophenyl-hydrazone (A-007) topical gel in the treatment of high-grade squamous intraepithelial lesions (HSIL) of the cervix. ASCO Annual Meeting Proceedings. J Clin Oncol. 2006;25(18_suppl):5593.

    Google Scholar 

Download references

Acknowledgment

The contributors of this chapter want to pay homage to Luis Benitez-Bribiesca M.D. who worked in our Institutions as Professor, Mentor, Colleague and Editor for over 40 years. We are extremely grateful to him for all his scientific efforts, teachings, advice and critiques, which were the translational pathway to take our scientific works from basic research to the clinic and patient care, such as he always claimed.

In Memoriam

figure a

Luis S. Benitez-Bribiesca M.D.

(1934–2015)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Astudillo-de la Vega MD MSc PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Astudillo-de la Vega, H., Ruiz-Garcia, E., Lopez-Camarillo, C., de la Garza-Salazar, J.G., Meneses-Garcia, A., Benitez-Bribiesca, L. (2017). Malignant Transforming Mechanisms of Human Papillomavirus. In: de la Garza-Salazar, J., Morales-Vásquez, F., Meneses-Garcia, A. (eds) Cervical Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-45231-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45231-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45230-2

  • Online ISBN: 978-3-319-45231-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics