Skip to main content

Marine Fog: A Review on Microphysics and Visibility Prediction

  • Chapter
  • First Online:
Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Marine fog occurs commonly over the world due to the various physical, chemical, dynamical, and radiative processes active at various time and space scales. These processes are affected by local topographical conditions such as surface height and irregularities, slope, and ocean-land boundaries and sea surface conditions as well as atmospheric physical conditions such as pollution as a source of cloud condensation nuclei, cooling rates, and moisture and heat fluxes. Marine fog is usually the result of the advection of warm air masses over cold surfaces or vice versa. Marine fog impacts transportation and shipping, aviation, and the Earth ecosystem because of reduced visibilities and increased moisture availability. Recent studies suggest that the occurrence of fog is decreasing in many part of the world over the lands but not over the ocean. Its prediction using numerical weather prediction (NWP) models includes large uncertainties on small space scales over the short time periods. In this review, first, fog observations are summarized, and second microphysics of fog and visibility were described. Fog prediction issues related to NWP model uncertainties and observational issues are then provided. In the end, future challenges related to marine fog observations and NWP model based prediction, as well as fog and climate change issues are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A nomenclature in the end of paper is provided for symbols used in this work.

Abbreviations

A:

Regression constant in Eq. (7.19)

Ac :

Cross sectional area

ADDS:

Aviation Digital Data Service

C:

3.6 s h−1 L g−1; unit conversion factor

CCN:

Cloud condensation nuclei

CCSM4:

Community Climate System Model 4

CN:

Condensation Nuclei

CONUS:

Contiguous United Sates

CO2 :

Carbon dioxide

c:

A constant for airmasses for droplet activation; 1000 cm−3 for airmasses over land

cm :

A constant in mass-size relationships (page 368), depending on particle shape

D:

Droplet diameter

Di :

Droplet diameter in bin i

DMT:

Droplet Measurement Technologies

FAA:

Federal Aviation Administration

FDS:

Fog droplet settling

FMD:

FM120

Fμ :

Kinematic viscosity

GCIP:

Ground Cloud Imaging Probe

GEM:

Global Environmental Multi-scale model

IC:

Initial conditions for a model

IN:

Ice nuclei

IFN:

Ice forming nuclei

IRSW:

Infrared shortwave part in ch2 of GOES data

Ki :

Dielectric constant for ice crystals

Kw :

Dielectric constant for water droplets

K:

Size parameters

K:

A constant for airmasses for droplet activation; 1 for airmasses over land

km :

A constant in mass-size relationships (page 368), depending on particle shape

LEPS:

Local Ensemble Prediction System

LVP:

Low visibility procedure

LWC:

Liquid water content

MOR:

Meteorological observing range

MSC:

Meteorological Service of Canada

NaO :

Aerosol number concentration over ocean

NaL :

Aerosol number concentration over land

Nd :

Droplet number concentration

Ndi :

Droplet number concentration in spectral bin i

Ndt :

Total droplet number concentration

NAM:

North American Model

NCAR:

National Center for Atmospheric Research

NCEP:

National Centers for Environmental Prediction (NCEP)

NESDIS:

National Environmental Satellite, Data, and Information Systems

NWP:

Numerical Weather Prediction

NWS:

National Weather Service

No :

The intercept parameter in gamma distribution

N(D):

Droplet spectral concentration

Ndt :

Total droplet number concentration

n(r):

Droplet spectral value at size r

n(S):

Droplet number concentration at a specific supersaturation ration

PBL:

Planetary boundary layer

PWA:

Polar warming amplification

Qdep :

Fog deposition rate on a mesh

Qext :

Extinction efficiency

qw :

Water mixing ratio

Reff :

Effective droplet size

RDPS:

Regional Deterministic Prediction System

RHw :

Relative humidity with respect to water

r:

Droplet size

reff :

Effective droplet size

HRDPS:

High resolution deterministic prediction system model

S:

Supersaturation with respect to water

SAAWSO:

Satellite Application for Arctic Weather and SAR Operations

SAR:

Search and rescue

SPN1:

Solar radiation sensor

SR:

Settling rate (or deposition rate) of fog droplets

SREF:

Short Range Ensemble Forecast

T:

Air temperature

To :

273.15 K

TPS:

Total precipitation sensor

Uh :

Horizontal wind speed

Vis:

Visibility

Viso :

Observed visibility

Vism :

Model based visibility

Vt :

Droplet terminal velocity

Vts :

Fog droplet settling velocity

wa :

Vertical air velocity

wm :

Vertical air velocity after taking mean or trend out

wo :

Observed vertical air velocity

w′:

wa fluctuations

X:

An empirical constant in Eq. (7.8) e.g., 0.49

x and y:

Constants in Eq. (7.19)

Z:

Radar reflectivity factor

Ze :

Radar equivalent reflectivity factor

α:

An empirical constant in Eq. (7.8) e.g., 0.877

η:

Dispersion parameter for size distribution (sd/mean)

μ:

Spectral shape parameter for gamma distribution or dynamic viscosity coefficient in Eq. (7.16)

λ:

Visible wavelength

λs :

Gamma distribution slope parameter

ε:

0.05 for MOR

βext :

Extinction of a visible light

γce :

Collection efficiency

ρa :

Air density

ρw :

Water droplet density

ΔTs:

Surface temperature change

References

  • Albers, H. W. (1977). ICAS Items-Naval marine fog research program. Bulletin of the American Meteorological Society, 58, 342.

    Google Scholar 

  • Anderson, J. (1931). Observations from airplanes of cloud and fog conditions along the southern California coast. Monthly Weather Review, 59, 264–270.

    Article  Google Scholar 

  • Antokhin, P. N., Arshinov, M. Y., Belan, B. D., Davydov, D. K., Zhidovkin, E. V., Ivlev, G. A., et al. (2012). Optik-É AN-30 aircraft laboratory for studies of the atmospheric composition. Journal of Atmospheric and Oceanic Technology, 29, 64–75.

    Article  Google Scholar 

  • Baguskas, S. A., Peterson, S. H., Bookhagen, B., & Still, C. J. (2014). Evaluating spatial patterns of drought-induced tree mortality in a coastal California pine forest. Forest Ecology and Management, 315, 43–53.

    Article  Google Scholar 

  • Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison, H., et al. (2014). Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5). Geoscientific Model Development, 7, 1733–1766.

    Article  Google Scholar 

  • Baronti, P., & Elzweig, S. (1973). A study of droplet spectra in fogs. Journal of the Atmospheric Sciences, 30, 903–908.

    Article  Google Scholar 

  • Beheng, K. D. (1994). A parameterization of warm cloud microphysical conversion processes. Atmospheric Research, 33, 193–206.

    Article  Google Scholar 

  • Bendix, J., Thies, B., Cermak, J., & Nauß, T. (2005). Ground fog detection from space based on MODIS daytime data—A feasibility study. Weather and Forecasting, 20, 989–1005.

    Article  Google Scholar 

  • Bergot, T., Carrer, D., Noilhan, J., & Bougeault, P. (2005). Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Weather and Forecasting, 20, 627–646.

    Article  Google Scholar 

  • Bergot, T., & Guedalia, D. (1994). Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Monthly Weather Review, 122, 1218–1230.

    Article  Google Scholar 

  • Boers, R., Baltink, H. K., Hemink, H. J., Bosveld, F. C., & Moerman, M. (2013). Ground-based observations and modeling of the visibility and radar reflectivity in a radiation fog layer. Journal of Atmospheric and Oceanic Technology, 30, 288–300.

    Article  Google Scholar 

  • Bott, A., Sievers, U., & Zdunkowski, W. (1990). A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. Journal of the Atmospheric Sciences, 47, 2153–2166.

    Article  Google Scholar 

  • Bott, A., & Trautmann, T. (2002). PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmospheric Research, 64, 191–203.

    Article  Google Scholar 

  • Brodrick, C. T. (1907). Fog on the Newfoundland banks. Monthly Weather Review, 35, 76–78.

    Article  Google Scholar 

  • Burrows, W. R., & Toth, G. (2011). Automated fog and stratus forecasts from the Canadian RDPS operational NWP model (p. 33). Extended Abstracts, 24th conference on weather and forecasting, 23–27 January, 2011, Seattle, WA. American Meteor Society, Ltd. doi: 10.13140/2.1.4852.0648.

    Google Scholar 

  • Cermak, J., & Bendix, J. (2011). Detecting ground fog from space—A microphysics-based approach. International Journal of Remote Sensing, 32(12), 3345–3371. doi:10.1080/01431161003747505.

    Article  Google Scholar 

  • Christner, B. C., Cai, R., Morris, C. E., McCarter, K. S., Foreman, C. M., Skidmoref, M. L., et al. (2008). Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. PNAS, 105(48), 18854–18859.

    Article  Google Scholar 

  • Cimini, D., Campos, E., Ware, R., Albers, S., Giuliani, G., Oreamuno, J., et al. (2010). Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, 49(12), 4959–4969.

    Article  Google Scholar 

  • Clark, P. A., Harcourt, S. A., Macpherson, B., Mathison, C. T., Cusack, S., & Naylor, M. (2008). Prediction of visibility and aerosol within the operational Met Office Unified Model. Part 1. Model formulation and variational assimilation. Quarterly Journal of the Royal Meteorological Society, 134, 1801–1816.

    Article  Google Scholar 

  • Claxton, B. M. (2008). Using a neural network to benchmark a diagnostic parameterization: The Met Office’s visibility scheme. Quarterly Journal of the Royal Meteorological Society, 134, 1527–1537.

    Article  Google Scholar 

  • Cohard, J. M., Pinty, J.-P., & Bedos, C. (1998). Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. Journal of the Atmospheric Sciences, 55, 3348–3357.

    Article  Google Scholar 

  • Croft, P. J., Pfost, R. L., Medlin, J. M., & Johnson, G. A. (1997). Fog forecasting for the southern region: A conceptual model approach. Weather and Forecasting, 12, 545–556.

    Article  Google Scholar 

  • Dabas, A., Remy, S., & Bergot, T. (2011). Use of a sodar to improve the forecast of fogs and low clouds on airports. Journal of Pure and Applied Geophysics, 169(5), 769–781. doi:10.1007/s00024-011-0334-y.

    Google Scholar 

  • David, N., Sendik, O., Messer, H., & Alpert, P. (2015). Cellular network infrastructure: The future of fog monitoring? Bulletin of the American Meteorological Society, 96, 1687–1698.

    Article  Google Scholar 

  • DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D. S., et al. (2003). Measurements of the concentration and composition of nuclei for cirrus formation. Proceedings of the National Academy of Sciences of the United States of America, 100, 14655–14660.

    Article  Google Scholar 

  • Deutsche Seewarte zu Hamburg. (1897). Annalen der Hydrographie und Maritimen Meteorologie, p. 390.

    Google Scholar 

  • Dorman, C.E., Mejia, J., Koračin, D., & McEvoy, D. (2017). Worldwide marine fog occurrence and climatology (Chap. 2). In D. Koračin & C.E. Dorman (Eds.), Marine fog: Challenges and Advancements in Observations, Modeling, and Forecasting (p. 537). New York: Springer.

  • Du, J., Yu, R., Cui, C., & Li, J. (2007). Using a mesoscale ensemble to predict forecast error and perform targeted observation. Acta Oceanologica Sinica, 33, 83–91.

    Article  Google Scholar 

  • Eastman, R., Warren, S.G., & Hahn, C.J. (2014). Climatic atlas of clouds over land and ocean. Retrieved from http://www.atmos.washington.edu/CloudMap/WebO/index.html.

  • Ellrod, G. P. (1995). Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather and Forecasting, 10, 606–619.

    Article  Google Scholar 

  • Ellrod, G. P., & Gultepe, I. (2007). Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Journal of Pure and Applied Geophysics, 164, 1193–1205.

    Article  Google Scholar 

  • Feingold, G., Yang, S., Hardesty, R. M., & Cotton, W. R. (1998). Feasibility of retrieving cloud condensation nucleus properties from Doppler cloud radar, microwave radiometer, and lidar. Journal of Atmospheric and Oceanic Technology, 15, 1188–1195.

    Article  Google Scholar 

  • Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I. Description. Journal of the Atmospheric Sciences, 51, 249–280.

    Article  Google Scholar 

  • Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., & DiMego, G. (2002). Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints. In 15th Conference on Numerical Weather Prediction, San Antonio, TX, American Meteor Society, Ltd., 10-1.

    Google Scholar 

  • Fitzgerald, J. W. (1978). A numerical model of the formation of droplet spectra in advection fogs at sea and its applicability to fogs off Nova Scotia. Journal of the Atmospheric Sciences, 35, 1522–1535.

    Article  Google Scholar 

  • Fletcher, N. H. (1966). The physics of rainclouds (p. 390). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ghan, S. J., Chuang, C. C., & Penner, J. E. (1993). A parameterization of cloud droplet nucleation. Part I: Single aerosol type. Atmospheric Research, 30, 197–221.

    Article  Google Scholar 

  • Golding, B. W. (1993). A study of the influence of terrain on fog development. Monthly Weather Review, 121, 2529–2541.

    Article  Google Scholar 

  • Golding, B. W. (1998). Nimrod: A system for generating automated very short range forecasts. Meteorological Applications, 5, 1–16.

    Article  Google Scholar 

  • Gultepe, I. (2008). Measurements of light rain, drizzle and heavy fog. In S. Michaelides (Ed.), A chapter in precipitation: Advances in measurement, estimation and prediction (pp. 59–82). Berlin: Springer. ISBN 978-3-540-77654-3.

    Chapter  Google Scholar 

  • Gultepe, I. (2011). Why are Canada’s coastal regions so foggy? Chapter 5. In Ahrens, C. D., Jackson P. L., and C. E. J. Jackson (Eds.), On condensation: Dew, fog, and clouds in the book of meteorology today (First Canadian Edition, pp. 132–139). Nelson Education, Toronto, ON. ISBN-13# 978-0-17-650039-9.

    Google Scholar 

  • Gultepe, I. (2014). Mountain weather: Observations and modeling. Advances in Geophysics, 55, 229–312.

    Google Scholar 

  • Gultepe, I., & Isaac, G. A. (1996). The relationship between cloud droplet and aerosol number concentrations for climate models. International Journal of Climatology, 16, 941–946.

    Article  Google Scholar 

  • Gultepe, I., & Isaac, G. A. (1999). Scale effects on averaging of cloud droplet and aerosol number concentrations: observations and models. Journal of Climate, 12, 1268–1279.

    Article  Google Scholar 

  • Gultepe, I., & Isaac, G. A. (2004). An analysis of cloud droplet number concentration (Nd) for climate studies: Emphasis on constant Nd. Quarterly Journal of the Royal Meteorological Society, 130, Part A(602), 2377–2390.

    Article  Google Scholar 

  • Gultepe, I., & Isaac, G. A. (2007). Cloud fraction parameterization as a function of mean cloud water content and its variance using in-situ observations. Geophysical Research Letters, 34, L07801. doi:10.1029/2006GL028223.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G. A., & Cober, S. G. (2001). Ice crystal number concentration versus temperature for climate studies. International Journal of Climatology, 21, 1281–1302.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G. A., Joe, P., Kucera, P., Thériault, J., & Fisico, T. (2014). Roundhouse (RND) mountain top research site: Measurements and uncertainties for winter alpine weather conditions. Journal of Pure and Applied Geophysics, 171, 59–85. doi:10.1007/s00024-012-0582-5.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G. A., Leaitch, W. R., & Banic, C. M. (1996). Parameterization of marine stratus microphysics based on in-situ observations: Implications for GCMs. Journal of Climate, 9, 345–357.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G., MacPherson, I., Marcotte, D., & Strawbridge, K. (2003). Characteristics of moisture and heat fluxes over leads and polynyas, and their effect on Arctic clouds during FIRE. Atmosphere-Ocean, 41, 15–34.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G. A., Rasmussen, R., & Ungar, K. (2009). A freezing fog/drizzle event during the FRAM-S project. In SAE International/AIAA, International Conference on Aircraft and Engine and Ground-De-Icing, Chicago, IL, 13–17 June 2011.

    Google Scholar 

  • Gultepe, I., Kuhn, T., Pavolonis, M., Calvert, C., Gurka, J., Isaac, G. A., et al. (2014). Ice fog in Arctic during FRAM-IF project: Aviation and nowcasting applications. Bulletin of the American Meteorological Society, 95, 211–226.

    Article  Google Scholar 

  • Gultepe, I., & Milbrand, J. (2007). Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Journal of Pure and Applied Geophysics, 164, 1161–1178.

    Article  Google Scholar 

  • Gultepe, I., & Milbrandt, J. A. (2010). Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. Journal of Applied Meteorology and Climatology, 49, 36–46.

    Article  Google Scholar 

  • Gultepe, I., Müller, M. D., & Boybeyi, Z. (2006). A new warm fog parameterization scheme for numerical weather prediction models. Journal of Applied Meteorology, 45, 1469–1480.

    Article  Google Scholar 

  • Gultepe, I., Pagowski, M., & Reid, J. (2007). Using surface data to validate a satellite based fog detection scheme. Journal of Weather and Forecasting, 22, 444–456.

    Article  Google Scholar 

  • Gultepe, I., M. Pavolonis, B. Zhou, R. Ware, R. Rabin, W. Burrows, et al. (2015). Freezing fog and drizzle observations. SAE International Conference on Aircraft and Engine Icing and Ground Icing, 22–25 June 2015, Prague, Czech Republic (SAE Technical Paper 2015-01-2113, 2015, doi:10.4271/2015-01-2113, 15pp).

    Google Scholar 

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling (FRAM) field project. Bulletin of the American Meteorological Society, 90, 341–359.

    Article  Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: A review of past achievements and future perspectives. Journal of Pure and Applied Geophysics, 164, 1121–1159. Special issue on fog, edited by I. Gultepe.

    Article  Google Scholar 

  • Gultepe, I., Zhou, B., Milbrandt, J., Bott, A., Li, Y., Heymsfield, A. J., et al. (2015). A review on ice fog: Observations and modeling. Atmospheric Research, 151, 2–19. doi:10.1016/j.atmosres.2014.04.014.

    Article  Google Scholar 

  • Haeffelin, M., et al. (2010). PARISFOG: Shedding new light on fog physical processes. Bulletin of the American Meteorological Society, 91, 767–783.

    Article  Google Scholar 

  • Haiden, T., Kann, A., & Pistotnik, G. (2014). Nowcasting with INCA during SNOW-V10. Journal of Pure and Applied Geophysics, 171(5–6), 231–242.

    Article  Google Scholar 

  • Hamazu, K., Hashiguchi, H., Wakayama, T., Matsuda, T., Doviak, R. J., & Fukao, S. (2003). A 35-GHz scanning Doppler radar for fog observations. Journal of Atmospheric and Oceanic Technology, 20, 972–986.

    Article  Google Scholar 

  • Hansen, B. (2007). A fuzzy logic-based analog forecasting system for ceiling and visibility. Weather and Forecasting, 22, 1319–1330.

    Article  Google Scholar 

  • Heo, K. Y., & Ha, K. J. (2010). A coupled model study on the formation and dissipation of sea fogs. Monthly Weather Review, 138, 1186–1205.

    Article  Google Scholar 

  • Herckes, P., Marcotte, A. R., Wang, Y., & Collett, J. L. (2015). Fog composition in the Central Valley of California over three decades. Atmospheric Research, 151, 20–30.

    Article  Google Scholar 

  • Hindman, E. E., Carter, E. J., Borys, R. D., & Mitchell, D. L. (1992). Collecting supercooled droplets as a function of droplet size. Journal of Atmospheric and Oceanic Technology, 9, 337–353.

    Article  Google Scholar 

  • Hudson, J. G. (1983). Effects of CCN concentrations on stratus clouds. Journal of the Atmospheric Sciences, 40, 480–486.

    Article  Google Scholar 

  • Hudson, J. G., & Li, H. (1995). Microphysical contrasts in Atlantic stratus. Journal of the Atmospheric Sciences, 52, 3031–3040.

    Article  Google Scholar 

  • Huijun, H., Liu, H., Jiang, W., Huang, J., & Mao, W. (2011). Characteristics of the boundary layer structure of sea fog on the coast of southern China. Advances in Atmospheric Sciences, 28(6), 1377–1389.

    Article  Google Scholar 

  • Janjic, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122, 927–945.

    Article  Google Scholar 

  • Janjic, Z. I. (1996). The surface layer in the NCEP Eta model. Reprints, 11th conference on numerical weather prediction (pp. 354–355). Norfolk, VA: American Meteor Society.

    Google Scholar 

  • Jensen, J. B., & Baker, M. B. (1989). A simple model of droplet spectral evolution during turbulent mixing. Journal of the Atmospheric Sciences, 46, 2812–2829.

    Article  Google Scholar 

  • Johnson, D. B. (1980). The influence of cloud-base temperature and pressure on droplet concentration. Journal of the Atmospheric Sciences, 37, 2079–2085.

    Article  Google Scholar 

  • Johnstone, J. A., & Dawson, T. E. (2010). Climatic context and ecological implications of summer fog decline in the coast redwood region. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4533–4538.

    Article  Google Scholar 

  • Jones, A., Roberts, D. L., & Slingo, A. (1994). A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370, 450–453.

    Article  Google Scholar 

  • Kärcher, B., Dörnbrack, A., & Sölch, I. (2014). Supersaturation variability and cirrus ice crystal size distributions. Journal of the Atmospheric Sciences, 71, 2905–2926.

    Article  Google Scholar 

  • Khairoutdinov, M., & Kogan, Y. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Monthly Weather Review, 128, 229–243.

    Article  Google Scholar 

  • Kim, C. K., Stuefer, M., Schmitt, C. G., Heymsfield, A. J., & Thompson, G. (2014). A numerical modeling of ice fog in Interior Alaska using weather research and forecasting model. Pure and Applied Geophysics, 171, 1963–1982.

    Article  Google Scholar 

  • Kim, C. K., & Yum, S. S. (2012). A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Boundary-Layer Meteorology, 143, 481–505.

    Article  Google Scholar 

  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., et al. (2012). Fog as a fresh water resource: Overview and perspectives. Ambio, 41, 221–234.

    Article  Google Scholar 

  • Koračin, D., Businger, J. A., Dorman, C. E., & Lewis, J. M. (2005). Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorology, 117, 447–478.

    Google Scholar 

  • Koračin, D., Dorman, C. E., Lewis, J. M., Hudson, J. G., Wilcox, E. M., & Torregrosa, A. (2014). Marine fog: A review. Atmospheric Research, 143, 142–175.

    Article  Google Scholar 

  • Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., & Businger, J. A. (2001). Transition of stratus into fog along the California coast: Observations and modeling. Journal of the Atmospheric Sciences, 58, 1714–1731.

    Article  Google Scholar 

  • Koschmieder, H. (1924). Therie der horizontalen sichtweite. Beitraege zur Physik der Atmosphaere, 12(33–53), 171–181.

    Google Scholar 

  • Koziara, M. C., Renard, R. J., & Thompson, W. J. (1983). Estimating marine fog probability using a model output statistics scheme. Monthly Weather Review, 111, 2333–2340.

    Article  Google Scholar 

  • Kunkel, B. A. (1984). Parameterization of droplet terminal velocity and extinction coefficient in fog models. Journal of Climate and Applied Meteorology, 23, 3441.

    Article  Google Scholar 

  • LaDochy, S., & Witiw, M. (2012). The continued reduction in dense fog in the southern California region: Possible causes. Pure and Applied Geophysics, 169, 1157–1163.

    Article  Google Scholar 

  • Lee, T. F., Turk, F. J., & Richardson, K. (1997). Stratus and fog products using GOES-8–9 3.9-μm data. Weather and Forecasting, 12, 664–677.

    Article  Google Scholar 

  • Lewis, J. M., Koračin, D., & Redmond, K. T. (2004). Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bulletin of the American Meteorological Society, 85, 395–408.

    Article  Google Scholar 

  • Li, P., Fu, G., & Lu, C. (2012). Large-scale environmental influences on the onset, maintenance, and dissipation of six sea fog cases over the Yellow Sea. Pure and Applied Geophysics, 169, 983–1000.

    Article  Google Scholar 

  • Lu, J., & Cai, M. (2009). Seasonality of polar surface warming amplification in climate simulations. Geophysical Research Letters, 36, L16704. doi:10.1029/2009GL040133.

    Article  Google Scholar 

  • Lundheim, R. (2002). Physiological and ecological significance of biological ice nucleators. Philosophical Transactions of the Royal Society of London, 357, 937–943.

    Article  Google Scholar 

  • Ma, J., Xu, X., Zhao, C., & Yan, P. (2012). Review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Advances in Atmospheric Sciences, 29(5), 1006–1025.

    Article  Google Scholar 

  • Maier, F., Bendix, J., & Thies, B. (2012). Simulating Z-LWC relations in natural fogs with radiative transfer calculations for future application to a cloud radar profiler. Journal of Pure and Applied Geophysics, 169(5–6), 793–807.

    Article  Google Scholar 

  • Manabe, S., & Stouffer, R. J. (1980). Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research, 85, 5529–5554.

    Article  Google Scholar 

  • Manabe, R., & Wetherald, T. (1980). On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. Journal of the Atmospheric Sciences, 37, 99–118.

    Article  Google Scholar 

  • Martin, G. M., Johnson, D. W., & Spice, A. (1994). The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. Journal of the Atmospheric Sciences, 51, 1823–1842.

    Article  Google Scholar 

  • Menzel, W. P., & Purdom, J. F. W. (1994). Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bulletin of the American Meteorological Society, 75, 757–781.

    Article  Google Scholar 

  • Miao, Y., Potts, R., Huang, X., Elliott, G., & Rivett, R. (2012). A fuzzy logic fog forecasting model for Perth airport. Journal of Pure and Applied Geophysics, 169(5–6), 1107–1119.

    Article  Google Scholar 

  • Milbrandt, J. A., & Yau, M. K. (2005a). A multi-moment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. Journal of the Atmospheric Sciences, 62, 3051–3064.

    Article  Google Scholar 

  • Milbrandt, J. A., & Yau, M. K. (2005b). A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, 62, 3065–3081.

    Article  Google Scholar 

  • Mohler, O., Field, P. R., Connolly, P., Benz, S., Saathoff, H., Schnaiter, M., et al. (2006). Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmospheric Chemistry and Physics Discussions, 6, 1539–1577.

    Article  Google Scholar 

  • Morrison, H., Curry, J. A., & Khvorostyanov, V. I. (2005). A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences, 62, 1665–1677.

    Article  Google Scholar 

  • Morrison, H., & Gettelman, A. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21, 3642–3659.

    Article  Google Scholar 

  • Morrison, H., & Milbrandt, J. (2011). Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Monthly Weather Review, 139, 1103–1130.

    Article  Google Scholar 

  • Muller, M. D., Masbou, M., & Bott, A. (2010). Three-dimensional fog forecasting in complex terrain. Quarterly Journal of the Royal Meteorological Society, 136, 2189–2202.

    Article  Google Scholar 

  • Muller, M. D., Schmutz, C., & Parlow, E. (2007). A one dimensional ensemble forecast and assimilation system for fog prediction. Journal of Pure and Applied Geophysics, 164, 1241–1264.

    Article  Google Scholar 

  • Murphy, D. M. (2003). Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophysical Research Letters, 30, 2230. doi:10.1029/2003GL018566.

    Article  Google Scholar 

  • Neumann, E. (1877). Bemerkung.... fiber die Neufundland bank Nebel. Ann. Hydr. Berlin V., 533p.

    Google Scholar 

  • Niu, S., Chunsong, L., Yangang, L., Lijuan, Z., Jingjing, L., & Jun, Y. (2010). Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study. Advances in Atmospheric Sciences, 27(6), 1259–1275.

    Article  Google Scholar 

  • Noonkester, V. R. (1979). Coastal marine fog in southern California. Monthly Weather Review, 107, 830–851.

    Article  Google Scholar 

  • Noonkester, V. R. (1985). Profiles of optical extinction coefficients calculated from droplet spectra observed in marine stratus cloud layers. Journal of the Atmospheric Sciences, 42, 1161–1171.

    Article  Google Scholar 

  • Ochs, H. T., Schaufelberger, D. E., & Feng, J. Q. (1991). Improved coalescence efficiency measurements for small precipitation drops. Journal of the Atmospheric Sciences, 48, 946–951.

    Article  Google Scholar 

  • Økland, H., & Gotaas, Y. (1995). Modelling and prediction of steam fog. Beitraege zur Physik der Atmosphaere, 68, 121–131.

    Google Scholar 

  • Oldenborgh, G. J. V., Yiou, P., & Vautard, R. (2010). On the roles of circulation and aerosols in the decline of mist and dense fog in Europe over the last years. Atmospheric Chemistry and Physics, 10, 4597–4609.

    Article  Google Scholar 

  • Pagowski, M., Gultepe, I., & King, P. (2004). Analysis and modeling of an extremely dense fog event in southern Ontario. Journal of Applied Meteorology, 43, 3–16.

    Article  Google Scholar 

  • Palmer, A. H. (1917). Fog along the California coast. Monthly Weather Review, 45, 496–499.

    Article  Google Scholar 

  • Pavolonis, M. J. (2010a). Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures Part I: Theory. Journal of Applied Meteorology and Climatology, 49, 1992–2012.

    Article  Google Scholar 

  • Pavolonis, M. J. (2010b). GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Cloud Type and Cloud Phase, Version 2.0, available from NOAA, Madison, Wisconsin, 86p.

    Google Scholar 

  • Petterssen, S. (1940). Weather analysis and forecasting: A textbook on synoptic meteorology (p. 505). New York: McGraw-Hill.

    Google Scholar 

  • Pilie, R. J., Mack, E. J., Rogers, C. W., Katz, U., & Kocmond, W. C. (1979). The formation of marine fog and the development of fog-stratus systems along the California coast. Journal of Applied Meteorology, 18, 1275–1286.

    Article  Google Scholar 

  • Porson, A., Price, J., Lock, A., & Clark, P. (2010). Radiation fog. Part II: Large-eddy simulations in very stable conditions. Boundary-Layer Meteorology, 139, 194–224.

    Google Scholar 

  • Price, J. (2011). Radiation fog. Part 1: Observations of stability and drop size distributions. Boundary-Layer Meteorology, 139, 167–191.

    Article  Google Scholar 

  • Rasmussen, R. M., Hallet, J., Purcell, R., Landolt, S. D., & Cole, J. (2011). The hotplate precipitation gauge. Journal of Atmospheric and Oceanic Technology, 28, 148–164.

    Article  Google Scholar 

  • Ritter, A., Regalado, C. M., & Aschan, G. (2008). Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): A combined approach using artificial fog catchers and a physically based impaction model. Journal of Hydrometeorology, 9, 920–935.

    Article  Google Scholar 

  • Roach, W., Brown, R., Caughey, S. J., Garland, J. A., & Readings, C. J. (1976). The physics of radiation fog: I—A field study. Quarterly Journal of the Royal Meteorological Society, 102, 313–333.

    Google Scholar 

  • Rogers, D. C., DeMott, P. J., & Grant, L. O. (1994). Concerning primary ice nuclei concentrations and water supersaturations in the atmosphere. Atmospheric Research, 33, 151–168.

    Article  Google Scholar 

  • Roquelaure, S., Tardif, R., Remy, S., & Bergot, T. (2009). Skill of a ceiling and visibility local ensemble prediction system (LEPS) according to fog-type prediction at Paris-Charles de Gaulle Airport. Weather and Forecasting, 24, 1511–1523.

    Article  Google Scholar 

  • Rosinski, J. (1995). Cloud condensation nuclei as a real source of ice forming nuclei in continental and marine air masses. Atmospheric Research, 38, 351–359.

    Article  Google Scholar 

  • Rosinski, J., Haagenson, P. L., Nagamoto, C. T., & Parunga, F. (1986). Ice forming nuclei of maritime origin. Journal of Aerosol Science, 17, 23–26.

    Article  Google Scholar 

  • Rotstayn, L. D., & Liu, Y. (2003). Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. Journal of Climate, 16, 3476–3481.

    Article  Google Scholar 

  • Schalkwyk, L. V., & Dyson, L. L. (2013). Climatological characteristics of fog at Cape Town International Airport. Weather and Forecasting, 28, 631–646.

    Article  Google Scholar 

  • Schemenauer, R. S., & Cereceda, P. (1992). The quality of fog water collected for domestic and agricultural use in Chile. Journal of Applied Meteorology, 31, 275–290.

    Article  Google Scholar 

  • Schemenauer, R. S., & Joe, P. (1989). The collection efficiency of a massive fog collector. Atmospheric Research, 24, 53–69.

    Article  Google Scholar 

  • Sejas, S. A., Albert, O. S., Cai, M., & Deng, Y. (2014). Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4. Environmental Research Letters, 9(12), 124005.

    Article  Google Scholar 

  • Shi, C., Wang, L., Zhang, H., Deng, X., Li, Y., & Qiu, M. (2012). Fog simulations based on multi-model system: A feasibility study. Pure and Applied Geophysics, 169, 941–960.

    Article  Google Scholar 

  • Stoelinga, T. G., & Warner, T. T. (1999). Non-hydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. Journal of Applied Meteorology, 38, 385–404.

    Article  Google Scholar 

  • Szyrmer, W., & Zawadzki, I. (1997). Biogenix and anthropogenic sources of ice forming-ice nuclei: A review. Bulletin of the American Meteorological Society, 78, 209–227.

    Article  Google Scholar 

  • Tampieri, F., & Tomasi, C. (1976). Size distribution models of fog and cloud droplets and their volume extinction coefficients at visible and infrared wavelengths. Pure and Applied Geophysics, 114, 571–585.

    Article  Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology, 46, 1141–1168.

    Article  Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2008). Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. Journal of Applied Meteorology and Climatology, 47, 1681–1703.

    Article  Google Scholar 

  • Teixeira, J. (1999). Simulation of fog with the ECMWF prognostic cloud scheme. Quarterly Journal of the Royal Meteorological Society, 125, 529–552.

    Article  Google Scholar 

  • Telford, J. W., & Chai, S. K. (1993). Marine fog and its dissipation over warm water. Journal of the Atmospheric Sciences, 50, 3336–3349.

    Article  Google Scholar 

  • Toth, G., Gultepe, I., Milbrandt, J., Hansen, B., Pearson, G., Fogarty, C., et al. (2011). The Environment Canada handbook on fog and fog forecasting. Environment Canada. Tech. Manual. ISBN # 978-1-100-52518-1. Available from Environment Canada, Toronto, Canada, 93p.

    Google Scholar 

  • Toth, Z., & Kalnay, E. (1993). Ensemble forecasting at the NMC: The generation of perturbations. Bulletin of the American Meteorological Society, 74, 2317–2330.

    Article  Google Scholar 

  • Tremant, M. (1987). La prévision du brouillard en mer. Météorologie Maritime et Activities Océanographique Connexes (Rapport No. 20. TD no. 211). World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Tripoli, G. J., & Cotton, W. R. (1980). A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. Journal of Applied Meteorology, 19, 1037–1063.

    Article  Google Scholar 

  • Twomey, S. (1959). The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure and Applied Geophysics, 43, 243–249.

    Article  Google Scholar 

  • U.S. Department of Agriculture. (1938). Atlas of the Climatic Charts of the Oceans. Publication No. 1247, Prepared under the supervision of W. F. McDonald, 130 charts. U.S. Weather Bureau.

    Google Scholar 

  • Uematsu, A., Hashiguchi, H., Teshiba, M., Tanaka, H., Hirashima, K., & Fukao, S. (2005). Moving cellular structure of fog echoes obtained with a millimeter-wave scanning Doppler radar at Kushiro. Journal of Applied Meteorology, 44, 1260–1273.

    Article  Google Scholar 

  • Vautard, R., Yiou, P., & van Oldenborgh, G. J. (2009). Decline of fog, mist and haze in Europe over the past 30 years. Nature Geoscience, 2, 115–119.

    Article  Google Scholar 

  • Walmsley, J. L., Schemenauer, R., & Bridgman, H. A. (1996). A method for estimating the hydrologic input from fog in mountainous terrain. Journal of Applied Meteorology, 35, 2237–2249.

    Article  Google Scholar 

  • Wang, D., Qin, Z., & Shi, P. (2004). Progress in marine meteorology studies in China during 1999–2002. Advances in Atmospheric Sciences, 21, 485–496.

    Article  Google Scholar 

  • Ware, R., Carpenter, R., Guldner, J., Liljegren, J., Nehrkorn, T., Solheim, F., et al. (2003). A multichannel radiometric profiler of temperature, humidity, and cloud liquid. Radio Science, 38(4), 8079. doi:10.1029/2002RS002856.

    Article  Google Scholar 

  • Wessels, H. R. A. (1973). Growth and disappearance of evaporation fog during the transformation of a cold air mass. Quarterly Journal of the Royal Meteorological Society, 105, 963–977.

    Article  Google Scholar 

  • Wilfried, J., Nietosvaara, V., Bott, A., Bendix, J., Cermak, J., Silas, M., et al. (2008). Short range forecasting methods of fog visibility and low clouds. COST Action 722, Earth System Science and Environmental Management Final report on COST-722 Action. ISBN # 978-92-898-0038-9Available from COST Office, Avenue Louise 149, B-1050 Brussel, Belgium, 489p.

    Google Scholar 

  • Wilkinson, J. M., Porson, A. N. F., Bornemann, F. J., Weeks, M., Field, P. R., & Lock, A. P. (2013). Improved microphysical parameterization of drizzle and fog for operational forecasting using the Met Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 139, 488–500.

    Article  Google Scholar 

  • Wright, B. J., & Thomas, N. (1998). An objective visibility analysis and very short- range forecasting system. Meteorological Applications, 5, 157–181.

    Article  Google Scholar 

  • Xie, S., Xue, Z., Qu, S., Jiang, D., & Zou, B. (2001). Summer arctic sea fog. Acta Oceanologica Sinica, 23(6), 40–50.

    Google Scholar 

  • Yang, D., Ritchie, H., Desjardins, S., Pearson, G., MacAfee, A., & Gultepe, I. (2009). High resolution GEM-LAM application in marine fog prediction: Evaluation and diagnosis. Weather and Forecasting, 25, 727–748.

    Article  Google Scholar 

  • Yum, S. S., & Hudson, J. G. (2005). Adiabatic predictions and observations of cloud droplet spectral broadness. Atmospheric Research, 73, 203–223.

    Article  Google Scholar 

  • Zelenyuk, A., & Imre, D. G. (2005). Single particle laser ablation time-of-flight mass spectrometer: An introduction to SPLAT. Aerosol Science and Technology, 39(6), 554–568

    Google Scholar 

  • Zhang, X., Genon, L. M., Dupont, E., Milliez, M., & Carissimo, B. (2014). On the influence of a simple microphysics parameterization on radiation fog modelling: A case study during ParisFog. Boundary-Layer Meteorology, 151, 293–315.

    Article  Google Scholar 

  • Zhang, S.-P. X., Liu, Q.-Y., Yang, Y.-Q., Wang, X.-G., & Ren, Z.-P. (2009). Seasonal variations of Yellow Sea fog: Observations and mechanisms. Journal of Climate, 22, 6758–6772.

    Article  Google Scholar 

  • Zhou, B., & Du, J. (2010). Fog prediction from a multi-model mesoscale ensemble prediction system. Weather and Forecasting, 25, 303–322.

    Article  Google Scholar 

  • Zhou, B., Du, J., Ferrier, B., McQueen, J., & Dimego, G. (2007). Numerical forecast of fog—Central solutions. Preprints, 18th conference on numerical weather prediction, Park City, UT, American Meteorological Society. 8A.6. Retrieved from http://ams.confex.com/ams/pdfpapers/123669.pdf.

  • Zhou, B., & Ferrier, B. S. (2008). Asymptotic analysis of equilibrium in radiation fog. Journal of Applied Meteorology and Climatology, 47, 1704–1722.

    Article  Google Scholar 

  • Zhou, B., Jun, D., Dimego, G., & Gultepe, I. (2012). Forecast of low visibility and fog from NCEP—Current status and efforts. Journal of Pure and Applied Geophysics, 169, 895–909.

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the DND SAR Office during FRAM and SAAWSO projects and focused on fog, low visibilities, and Arctic weather. Additional financial and logistic support was also provided by EC Cloud Physics and Research Section, Toronto, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Gultepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gultepe, I., Milbrandt, J.A., Zhou, B. (2017). Marine Fog: A Review on Microphysics and Visibility Prediction. In: Koračin, D., Dorman, C. (eds) Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45229-6_7

Download citation

Publish with us

Policies and ethics