Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Studies on the role of radiation on the formation, evolution and dissipation of marine fog are introduced. Cooling of the air above colder sea surface can be caused by longwave radiative flux divergence and if this cooling is strong enough water vapor saturation can occur to form advection fog. Once fog droplets are formed, fog top radiative cooling due to outgoing longwave radiation plays a significant role in developing the fog layer. The dependency of longwave radiation on the fog microphysics is also examined. Contrary to longwave radiation, solar warming is found to be a main cause of fog dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andre, J. C., & Mahrt, L. (1982). The nocturnal surface inversion and influence of clear-air radiative cooling. Journal of the Atmospheric Sciences, 39, 864–878.

    Article  Google Scholar 

  • Atwater, M. A. (1970). Investigation of the radiation balance for polluted layers of the urban environment, Ph.D Thesis, New York University, New York, 116p.

    Google Scholar 

  • Ballard, S. P., Golding, B. W., & Smith, R. N. B. (1991). Mesoscale model experimental forecasts of the Haar of northeast Scotland. Monthly Weather Review, 119, 2107–2123.

    Article  Google Scholar 

  • Barker, E. (1977). A maritime boundary-layer model for the prediction of fog. Boundary-Layer Meteorology, 11, 267–294.

    Article  Google Scholar 

  • Brown, R., & Roach, W. T. (1976). The physics of radiation fog: II—A numerical study. Quarterly Journal of the Royal Meteorological Society, 102, 335–354.

    Google Scholar 

  • Coantic, M., & Seguin, B. (1971). On the interaction of turbulent and radiative transfers in the surface layer. Boundary-Layer Meteorology, 1, 245–263.

    Article  Google Scholar 

  • Douglas, C. (1930). Cold fogs over the sea. Meteorological Magazine, 65, 133–135.

    Google Scholar 

  • Duynkerke, P. G., Jonker, P. J., Chlond, A., Van Zanten, M. C., Cuxart, J., Clark, P., et al. (1999). Intercomparison of three- and one-dimensional model simulations and aircraft observations of stratocumulus. Boundary-Layer Meteorology, 92, 453–487.

    Article  Google Scholar 

  • Estournel, C., Vehil, R., & Guedalia, D. (1986). An observational study of radiative and turbulent cooling in the nocturnal boundary layer (ECLATS experiment). Boundary-Layer Meteorology, 34, 55–62.

    Article  Google Scholar 

  • Findlater, J., Roach, W. T., & McHugh, B. C. (1989). The Haar of north-east Scotland. Quarterly Journal of the Royal Meteorological Society, 115, 581–608.

    Article  Google Scholar 

  • Garratt, J. R., & Brost, R. A. (1981). Radiative cooling effects within and above the nocturnal boundary layer. Journal of the Atmospheric Sciences, 38, 2730–2746.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., Sharan, M., McNider, R. T., & Singh, M. P. (1998). Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. Journal of the Atmospheric Sciences, 55, 954–960.

    Article  Google Scholar 

  • Hanson, H. P. (1987). Radiative/turbulent transfer interactions in layer clouds. Journal of the Atmospheric Sciences, 44, 1287–1295.

    Article  Google Scholar 

  • Kim, C. K., & Yum, S. S. (2012a). Marine boundary layer structure for the sea fog formation off the west coast of the Korean peninsula. Pure and Applied Geophysics, 169, 1121–1135.

    Article  Google Scholar 

  • Kim, C. K., & Yum, S. S. (2012b). A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Boundary-Layer Meteorology, 143, 481–505.

    Article  Google Scholar 

  • Kim, C. K., & Yum, S. S. (2013). A study on the transition mechanism of a stratus cloud into a warm sea fog using a single column model PAFOG coupled with WRF. Asia-Pacific Journal of Atmospheric Sciences, 49, 245–257.

    Article  Google Scholar 

  • Koračin, D., Businger, J. A., Dorman, C. E., & Lewis, J. (2005). Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorology, 117, 447–478.

    Article  Google Scholar 

  • Koračin, D., Leipper, D. F., & Lewis, J. M. (2005). Modeling sea fog on the U.S. California coast during a hot spell event. Geofizika, 22, 59–82.

    Google Scholar 

  • Koračin, D., Lewis, J. M., Thompson, W. T., Dorman, C. E., & Businger, J. A. (2001). Transition of stratus into fog along the California coast: Observations and modeling. Journal of the Atmospheric Sciences, 58, 1714–1731.

    Article  Google Scholar 

  • Krishna, T. B. P. S. R. V., Sharan, M., Gopalakrishnan, S. G., & Aditi. (2003). Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. Journal of Applied Meteorology, 42, 952–969.

    Article  Google Scholar 

  • Lamb, H. (1943). Haars or North Sea fogs on the coasts of Great Britain. Meteorology Office Publication M. O. 504, 24p.

    Google Scholar 

  • Oliver, D. A., Lewellen, W. S., & Williamson, G. G. (1978). The interaction between turbulent and radiative transport in the development of fog and low-level stratus. Journal of the Atmospheric Sciences, 35, 301–316.

    Article  Google Scholar 

  • Pilié, R. J., Mack, E. J., Rogers, C. W., Katz, U., & Kocmond, W. C. (1979). The formation of marine fog and the development of fog-stratus systems along the California coast. Journal of Applied Meteorology, 18, 1275–1286.

    Article  Google Scholar 

  • Savijarvi, H. (2006). Radiative and turbulent heating rates in the clear-air boundary layer. Quarterly Journal of the Royal Meteorological Society, 132, 147–161.

    Article  Google Scholar 

  • Steeneveld, G. J., Wokke, M. J. J., Groot Zwaaftink, C. D., Pijlman, S., Heusinkveld, B. G., Jacobs, A. F. G., et al. (2010). Observations of the radiation divergence in the surface layer and its implication for its parameterization in numerical weather prediction models. Journal of Geophysical Research, 115, D06107.

    Article  Google Scholar 

  • Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht: Kluwer. 666p.

    Book  Google Scholar 

  • Zdunkowski, W. G., & Barr, A. E. (1972). A radiative-conductive model for the prediction of radiation fog. Boundary-Layer Meteorology, 3, 152–177.

    Article  Google Scholar 

  • Zdunkowski, W. G., & Nielsen, B. C. (1969). A preliminary prediction analysis of radiation fog. Pure and Applied Geophysics, 75, 278–299.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-2061.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Ki Kim or Seong Soo Yum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, C.K., Yum, S.S. (2017). Radiation in Marine Fog. In: Koračin, D., Dorman, C. (eds) Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45229-6_5

Download citation

Publish with us

Policies and ethics