Skip to main content

A Role for Autoimmunity in the Immune Response Against Malaria

  • Chapter
  • First Online:
Malaria

Chapter Summary

Malaria, like other infectious diseases, leads to the development of autoimmunity. Multiple studies have reported various features of autoimmunity during malaria, such as polyclonal activation and autoantibody production. Autoimmunity during malaria has been hypothesized to play a role in parasite control and clearance. Conversely, autoimmunity has also been implied in contributing to most of the pathologies observed during complicated malaria. Autoimmune diseases shared many clinical and pathology features associated with clinical malaria. Genetic evidence has even suggested evolutionary links between the development of autoimmune disease and protections against clinical malaria. Although the presence of autoimmunity during malaria and other infections has been extensively reported, mechanistic insights and efforts to understand its role have proven to be challenging. The recent advancements achieved in understanding other autoimmune disorders can aid in understanding the presence and role of autoimmunity during infection. In this chapter, we aim to discuss the role that autoimmunity may play in both malaria protection and pathology. We also discuss various genetic and mechanistic evidences supporting the link between malaria and autoimmune diseases. Lastly, we conclude summarizing the evidence of autoimmunity during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pradeu T, Cooper EL (2012) The danger theory: 20 years later. Front Immunol 3:287. doi:10.3389/fimmu.2012.00287

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Infections and autoimmunity—friends or foes? Trends Immunol 30(8):409–414. doi:10.1016/j.it.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg YJ (1978) Autoimmune and polyclonal B cell responses during murine malaria. Nature 274(5667):170–172

    Article  CAS  PubMed  Google Scholar 

  4. Consigny PH, Cauquelin B, Agnamey P, Comby E, Brasseur P, Ballet JJ, Roussilhon C (2002) High prevalence of co-factor independent anticardiolipin antibodies in malaria exposed individuals. Clin Exp Immunol 127(1):158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liew J, Amir A, Chen Y, Fong MY, Razali R, Lau YL (2015) Autoantibody profile of patients infected with knowlesi malaria. Clin Chim Acta 448:33–38. doi:10.1016/j.cca.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Zandman-Goddard G, Shoenfeld Y (2009) Parasitic infection and autoimmunity. Lupus 18(13):1144–1148. doi:10.1177/0961203309345735

    Article  CAS  PubMed  Google Scholar 

  7. Smith KG, Clatworthy MR (2010) FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10(5):328–343. doi:10.1038/nri2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adebajo AO (1997) Low frequency of autoimmune disease in tropical Africa. Lancet 349(9048):361–362

    Article  CAS  PubMed  Google Scholar 

  9. Butcher G (2008) Autoimmunity and malaria. Trends Parasitol 24(7):291–292. doi:10.1016/j.pt.2008.03.010

    Article  PubMed  Google Scholar 

  10. Jarra W (1983) Protective immunity to malaria and anti-erythrocyte autoimmunity. Ciba Found Symp 94:137–158

    CAS  PubMed  Google Scholar 

  11. Daniel-Ribeiro CT, Zanini G (2000) Autoimmunity and malaria: what are they doing together? Acta Trop 76(3):205–221

    Article  CAS  PubMed  Google Scholar 

  12. Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D (2003) Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 60(8):1623–1635. doi:10.1007/s00018-003-2347-x

    Article  CAS  PubMed  Google Scholar 

  13. Chatzantoni K, Mouzaki A (2006) Anti-TNF-alpha antibody therapies in autoimmune diseases. Curr Top Med Chem 6(16):1707–1714

    Article  CAS  PubMed  Google Scholar 

  14. Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM (2011) Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 7(9):1427–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT (2014) Innate sensing of malaria parasites. Nat Rev Immunol 14(11):744–757. doi:10.1038/nri3742

    Article  CAS  PubMed  Google Scholar 

  16. Niewold TB (2014) Type I interferon in human autoimmunity. Front Immunol 5:306. doi:10.3389/fimmu.2014.00306

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kurien BT, Scofield RH (2008) Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev 7(7):567–573. doi:10.1016/j.autrev.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pleass RJ, Moore SC, Stevenson L, Hviid L (2016) Immunoglobulin M: restrainer of inflammation and mediator of immune evasion by Plasmodium falciparum malaria. Trends Parasitol 32(2):108–119. doi:10.1016/j.pt.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  19. Prodeus AP, Goerg S, Shen LM, Pozdnyakova OO, Chu L, Alicot EM, Goodnow CC, Carroll MC (1998) A critical role for complement in maintenance of self-tolerance. Immunity 9(5):721–731

    Article  CAS  PubMed  Google Scholar 

  20. Stoute JA, Odindo AO, Owuor BO, Mibei EK, Opollo MO, Waitumbi JN (2003) Loss of red blood cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. J Infect Dis 187(3):522–525. doi:10.1086/367712

    Article  CAS  PubMed  Google Scholar 

  21. Egan ES, Jiang RH, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, Takahashi J, Watanabe S, Goldberg J, Paul AS, Brugnara C, Root DE, Wiegand RC, Doench JG, Duraisingh MT (2015) Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science 348(6235):711–714. doi:10.1126/science.aaa3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carroll MC (1998) CD21/CD35 in B cell activation. Semin Immunol 10(4):279–286. doi:10.1006/smim.1998.0120

    Article  CAS  PubMed  Google Scholar 

  23. Korir JC, Magambo JK, Mwatha JK, Waitumbi JN (2012) B-cell activity in children with malaria. Malar J 11:66. doi:10.1186/1475-2875-11-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kremlitzka M, Polgar A, Fulop L, Kiss E, Poor G, Erdei A (2013) Complement receptor type 1 (CR1, CD35) is a potent inhibitor of B-cell functions in rheumatoid arthritis patients. Int Immunol 25(1):25–33. doi:10.1093/intimm/dxs090

    Article  CAS  PubMed  Google Scholar 

  25. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416(6881):603–607. doi:10.1038/416603a

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberg EB, Strickland GT, Yang SL, Whalen GE (1973) IgM antibodies to red cells and autoimmune anemia in patients with malaria. Am J Trop Med Hyg 22(2):146–152

    CAS  PubMed  Google Scholar 

  27. Abu-Shakra M, Shoenfeld Y (1991) Parasitic infection and autoimmunity. Autoimmunity 9(4):337–344

    Article  CAS  PubMed  Google Scholar 

  28. Daniel-Ribeiro C, Druilhe P, Monjour L, Homberg JC, Gentilini M (1983) Specificity of auto-antibodies in malaria and the role of polyclonal activation. Trans R Soc Trop Med Hyg 77(2):185–188

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez-Arias C, Rivera-Correa J, Gallego-Delgado J, Rudlaff R, Fernandez C, Roussel C, Gotz A, Gonzalez S, Mohanty A, Mohanty S, Wassmer S, Buffet P, Ndour PA, Rodriguez A (2016) Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia. Cell Host Microbe 19(2):194–203. doi:10.1016/j.chom.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  30. Lefrancois G, Bouvet E, le Bras J, Vroklans M, Simonneau M, Vachon F (1982) Anti-erythrocyte autoimmunisation during chronic Falciparum malaria. Lancet 1(8266):280–281

    Article  CAS  PubMed  Google Scholar 

  31. Wozencraft AO, Lloyd CM, Staines NA, Griffiths VJ (1990) Role of DNA-binding antibodies in kidney pathology associated with murine malaria infections. Infect Immun 58(7):2156–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Arias C, Lopez JP, Hernandez-Perez JN, Bautista-Ojeda MD, Branch O, Rodriguez A (2013) Malaria inhibits surface expression of complement receptor 1 in monocytes/macrophages, causing decreased immune complex internalization. J Immunol 190(7):3363–3372. doi:10.4049/jimmunol.1103812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Owuor BO, Odhiambo CO, Otieno WO, Adhiambo C, Makawiti DW, Stoute JA (2008) Reduced immune complex binding capacity and increased complement susceptibility of red cells from children with severe malaria-associated anemia. Mol Med 14(3–4):89–97. doi:10.2119/2007-00093.Owuor

    PubMed  Google Scholar 

  34. de Oliveira RB, Wang JP, Ram S, Gazzinelli RT, Finberg RW, Golenbock DT (2014) Increased survival in B-cell-deficient mice during experimental cerebral malaria suggests a role for circulating immune complexes. MBio 5(2), e00949-00914. doi:10.1128/mBio.00949-14

    Article  Google Scholar 

  35. Eisenhut M (2009) Causes of reduced immune complex clearance in cerebral malaria. Parasite Immunol 31(2):59. doi:10.1111/j.1365-3024.2008.01074.x, author reply 60

    Article  CAS  PubMed  Google Scholar 

  36. Hirako IC, Gallego-Marin C, Ataide MA, Andrade WA, Gravina H, Rocha BC, de Oliveira RB, Pereira DB, Vinetz J, Diamond B, Ram S, Golenbock DT, Gazzinelli RT (2015) DNA-containing immunocomplexes promote inflammasome assembly and release of pyrogenic cytokines by CD14+ CD16+ CD64 high CD32 low inflammatory monocytes from malaria patients. MBio 6(6):e01605–e01615. doi:10.1128/mBio.01605-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu X, Gowda NM, Kumar S, Gowda DC (2010) Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J Immunol 184(8):4338–4348. doi:10.4049/jimmunol.0903824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lacerda MV, Mourao MP, Coelho HC, Santos JB (2011) Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 106(Suppl 1):52–63

    Article  PubMed  Google Scholar 

  39. Facer CA, Agiostratidou G (1994) High levels of anti-phospholipid antibodies in uncomplicated and severe Plasmodium falciparum and in P. vivax malaria. Clin Exp Immunol 95(2):304–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Owens S, Chamley LW, Ordi J, Brabin BJ, Johnson PM (2005) The association of anti-phospholipid antibodies with parity in placental malaria. Clin Exp Immunol 142(3):512–518. doi:10.1111/j.1365-2249.2005.02936.x

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Berlin T, Zandman-Goddard G, Blank M, Matthias T, Pfeiffer S, Weis I, Toubi E, Singh S, Asherson R, Fraser A, Gilburd B, Sapir T, Levy Y, Lukac J, Rozman B, Kveder T, Shoenfeld Y (2007) Autoantibodies in nonautoimmune individuals during infections. Ann N Y Acad Sci 1108:584–593

    Article  CAS  PubMed  Google Scholar 

  42. Sene D, Piette JC, Cacoub P (2008) Antiphospholipid antibodies, antiphospholipid syndrome and infections. Autoimmun Rev 7(4):272–277. doi:10.1016/j.autrev.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  43. Casares S, Richie TL (2009) Immune evasion by malaria parasites: a challenge for vaccine development. Curr Opin Immunol 21(3):321–330. doi:10.1016/j.coi.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  44. Poels LG, van Niekerk CC, van der Sterren-Reti V, Jerusalem C (1980) Plasmodium berghei: T cell-dependent autoimmunity. Exp Parasitol 49(1):97–105

    Article  CAS  PubMed  Google Scholar 

  45. Lehmann PV, Targoni OS, Forsthuber TG (1998) Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol Rev 164:53–61

    Article  CAS  PubMed  Google Scholar 

  46. Butcher GA (1991) Does malaria select for predisposition to autoimmune disease? J R Soc Med 84(8):451–453

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Safeukui I, Gomez ND, Adelani AA, Burte F, Afolabi NK, Akondy R, Velazquez P, Holder A, Tewari R, Buffet P, Brown BJ, Shokunbi WA, Olaleye D, Sodeinde O, Kazura J, Ahmed R, Mohandas N, Fernandez-Reyes D, Haldar K (2015) Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. MBio 6(1), e02493-14. doi:10.1128/mBio.02493-14

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11. doi:10.1111/j.1365-2249.2010.04143.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Howland SW, Claser C, Poh CM, Gun SY, Renia L (2015) Pathogenic CD8+ T cells in experimental cerebral malaria. Semin Immunopathol 37(3):221–231. doi:10.1007/s00281-015-0476-6

    Article  CAS  PubMed  Google Scholar 

  50. Sotgiu S, Angius A, Embry A, Rosati G, Musumeci S (2008) Hygiene hypothesis: innate immunity, malaria and multiple sclerosis. Med Hypotheses 70(4):819–825. doi:10.1016/j.mehy.2006.10.069

    Article  CAS  PubMed  Google Scholar 

  51. Elkon KB, Silverman GJ (2012) Naturally occurring autoantibodies to apoptotic cells. Adv Exp Med Biol 750:14–26. doi:10.1007/978-1-4614-3461-0_2

    Article  CAS  PubMed  Google Scholar 

  52. Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140(5):619–630. doi:10.1016/j.cell.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  53. Bordmann G, Rudin W, Favre N (1998) Immunization of mice with phosphatidylcholine drastically reduces the parasitaemia of subsequent Plasmodium chabaudi chabaudi blood-stage infections. Immunology 94(1):35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bate CA, Kwiatkowski D (1994) A monoclonal antibody that recognizes phosphatidylinositol inhibits induction of tumor necrosis factor alpha by different strains of Plasmodium falciparum. Infect Immun 62(12):5261–5266

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Soares MP, Yilmaz B (2016) Microbiota control of malaria transmission. Trends Parasitol 32(2):120–130. doi:10.1016/j.pt.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  56. Galili U (2013) Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits. Immunology 140(1):1–11. doi:10.1111/imm.12110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4(3):169–180. doi:10.1038/nri1311

    Article  CAS  PubMed  Google Scholar 

  58. Mannoor K, Li C, Inafuku M, Taniguchi T, Abo T, Sato Y, Watanabe H (2013) Induction of ssDNA-binding autoantibody secreting B cell immunity during murine malaria infection is a critical part of the protective immune responses. Immunobiology 218(1):10–20. doi:10.1016/j.imbio.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  59. Green TJ, Packer BJ (1984) A role for rheumatoid factor enhancement of Plasmodium falciparum schizont inhibition in vitro. Infect Immun 46(3):668–672

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zenonos ZA, Dummler SK, Muller-Sienerth N, Chen J, Preiser PR, Rayner JC, Wright GJ (2015) Basigin is a druggable target for host-oriented antimalarial interventions. J Exp Med 212(8):1145–1151. doi:10.1084/jem.20150032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Langhorne J, Duffy PE (2016) Expanding the antimalarial toolkit: targeting host-parasite interactions. J Exp Med 213(2):143–153. doi:10.1084/jem.20151677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grant AV, Roussilhon C, Paul R, Sakuntabhai A (2015) The genetic control of immunity to Plasmodium infection. BMC Immunol 16:14. doi:10.1186/s12865-015-0078-z

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brownlie RJ, Lawlor KE, Niederer HA, Cutler AJ, Xiang Z, Clatworthy MR, Floto RA, Greaves DR, Lyons PA, Smith KG (2008) Distinct cell-specific control of autoimmunity and infection by FcγRIIb. J Exp Med 205(4):883–895. doi:10.1084/jem.20072565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Butcher GA (1996) Malaria and macrophage function in Africans: a possible link with autoimmune disease? Med Hypotheses 47(2):97–100

    Article  CAS  PubMed  Google Scholar 

  65. Willcocks LC, Carr EJ, Niederer HA, Rayner TF, Williams TN, Yang W, Scott JA, Urban BC, Peshu N, Vyse TJ, Lau YL, Lyons PA, Smith KG (2010) A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci U S A 107(17):7881–7885. doi:10.1073/pnas.0915133107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clatworthy MR, Willcocks L, Urban B, Langhorne J, Williams TN, Peshu N, Watkins NA, Floto RA, Smith KG (2007) Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria. Proc Natl Acad Sci U S A 104(17):7169–7174. doi:10.1073/pnas.0608889104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Odorizzi PM, Wherry EJ (2012) Inhibitory receptors on lymphocytes: insights from infections. J Immunol 188(7):2957–2965. doi:10.4049/jimmunol.1100038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S, Traore B, Kayentao K, Ongoiba A, Doumbo OK, Pierce SK (2009) Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol 183(3):2176–2182. doi:10.4049/jimmunol.0901297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Portugal S, Tipton CM, Sohn H, Kone Y, Wang J, Li S, Skinner J, Virtaneva K, Sturdevant DE, Porcella SF, Doumbo OK, Doumbo S, Kayentao K, Ongoiba A, Traore B, Sanz I, Pierce SK, Crompton PD (2015) Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. Elife 4, e07218. doi:10.7554/eLife.07218

    Article  PubMed Central  Google Scholar 

  70. Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D, Busse CE, Esen M, Theisen M, Mordmuller B, Wardemann H (2013) Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. J Exp Med 210(2):389–399. doi:10.1084/jem.20121970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, Waldschmidt TJ, Crompton PD, Harty JT (2012) Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13(2):188–195. doi:10.1038/ni.2180

    Article  CAS  Google Scholar 

  72. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8(3):239–245. doi:10.1038/ni1443

    Article  CAS  PubMed  Google Scholar 

  73. Bonilla-Abadia F, Tobon GJ, Canas CA (2012) Possible influence of resistance to malaria in clinical presentation of rheumatoid arthritis: biological significance of natural selection. Arthritis 2012:670579. doi:10.1155/2012/670579

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rivera-Correa, J., Rodriguez, A. (2017). A Role for Autoimmunity in the Immune Response Against Malaria. In: Mota, M., Rodriguez, A. (eds) Malaria. Springer, Cham. https://doi.org/10.1007/978-3-319-45210-4_5

Download citation

Publish with us

Policies and ethics