Skip to main content

Immune Responses to Whole-Organism Blood-Stage Malaria Vaccines

  • Chapter
  • First Online:
Malaria

Chapter Summary

Despite decades of effort, an effective malaria vaccine has not yet been developed. Continued issues with the efficacy of the subunit vaccine approach have led to a renewed interest in the use of the whole-parasite vaccine approach for malaria. This approach maximizes the number of antigens presented to the immune system; antigenic diversity will thus have limited impact on efficacy. In this chapter we discuss the use of whole blood-stage parasites in the development of a malaria vaccine. This approach is being developed using killed or attenuated parasites. Attenuation methods include γ-irradiation, genetic deletion/disruption, or chemical treatment of parasites. We discuss these strategies and review the immune responses induced following vaccination. This is an exciting field; however, many challenges remain including issues relating to the use of red blood cells in the vaccine and suitable methods for vaccine storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation (2015) World malaria report 2015. World Health Organisation, Geneva

    Google Scholar 

  2. Faulde MK, Hoffmann R, Fazilat KM, Hoerauf A (2007) Malaria reemergence in northern Afghanistan. Emerg Infect Dis 13(9):1402. doi:10.3201/eid1309.061325

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou SS, Wang Y, Li Y (2011) Malaria situation in the People’s Republic of China in 2010. Chin J Parasitol Parasitic Dis 29(6):401–403

    Google Scholar 

  4. Zepp F (2010) Principles of vaccine design—lessons from nature. Vaccine 28(Suppl 3):C14–C24. doi:10.1016/j.vaccine.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  5. Thomson KJ, Freund J, Sommer HE, Walter AW, Pisani T (1947) Immunization of ducks against malaria by means of killed parasites with or without adjuvants. Am J Trop Med Hyg 27(2):79–105

    CAS  PubMed  Google Scholar 

  6. Freund J, Thomson KJ, Sommer HE, Walter AW, Pisani TM (1948) Immunization of monkeys against malaria by means of killed parasites with adjuvants. Am J Trop Med Hyg 28(1):1–22

    CAS  PubMed  Google Scholar 

  7. Kemp DJ, Coppel RL, Cowman AF, Saint RB, Brown GV, Anders RF (1983) Expression of Plasmodium falciparum blood-stage antigens in Escherichia coli: detection with antibodies from immune humans. Proc Natl Acad Sci U S A 80(12):3787–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellis J, Ozaki LS, Gwadz RW, Cochrane AH, Nussenzweig V, Nussenzweig RS, Godson GN (1983) Cloning and expression in E. coli of the malarial sporozoite surface antigen gene from Plasmodium knowlesi. Nature 302(5908):536–538. doi:10.1038/302536a0

    Article  CAS  PubMed  Google Scholar 

  9. Tongren JE, Drakeley CJ, McDonald SL, Reyburn HG, Manjurano A, Nkya WM, Lemnge MM, Gowda CD, Todd JE, Corran PH (2006) Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun 74(1):257–264. doi:10.1128/IAI.74.1.257-264.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S, Gilson PR, Murphy VJ, Anders RF, Mueller I (2009) Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun 77(3):1165–1174. doi:10.1128/IAI.01129-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richards JS, Stanisic DI, Fowkes FJI, Tavul L, Dabod E, Thompson JK, Kumar S, Chitnis CE, Narum DL, Michon P, Siba PM, Cowman AF, Mueller I, Beeson JG (2010) Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clin Infect Dis 51(8):e50–e60. doi:10.1086/656413

    Article  CAS  PubMed  Google Scholar 

  12. Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJ, Cross N, Langer C, Takeo S, Uboldi AD (2013) Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol 191(2):795–809. doi:10.4049/jimmunol.1300778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reiling L, Richards JS, Fowkes FJI, Wilson DW, Chokejindachai W, Barry AE, Tham W-H, Stubbs J, Langer C, Donelson J, Michon P, Tavul L, Crabb BS, Siba PM, Cowman AF, Mueller I, Beeson JG (2012) The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria. PLoS One 7(9), e45253. doi:10.1371/journal.pone.0045253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A, Rare L, Baisor M, Lorry K, Brown GV, Pye D, Irving DO, Smith TA, Beck HP, Alpers MP (2002) A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis 185(6):820–827

    Article  PubMed  Google Scholar 

  15. Ockenhouse CF, Angov E, Kester KE, Diggs C, Soisson L, Cummings JF, Stewart AV, Palmer DR, Mahajan B, Krzych U, Tornieporth N, Delchambre M, Vanhandenhove M, Ofori-Anyinam O, Cohen J, Lyon JA, Heppner DG (2006) Phase I safety and immunogenicity trial of FMP1/AS02A, a Plasmodium falciparum MSP-1 asexual blood stage vaccine. Vaccine 24(15):3009–3017. doi:10.1016/j.vaccine.2005.11.028

    Article  CAS  PubMed  Google Scholar 

  16. Stoute JA, Gombe J, Withers MR, Siangla J, McKinney D, Onyango M, Cummings JF, Milman J, Tucker K, Soisson L, Stewart VA, Lyon JA, Angov E, Leach A, Cohen J, Kester KE, Ockenhouse CF, Holland CA, Diggs CL, Wittes J, Gray Heppner D Jr (2007) Phase 1 randomized double-blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya. Vaccine 25(1):176–184. doi:10.1016/j.vaccine.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  17. Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, Sissoko MS, Kone M, Diallo AI, Saye R, Guindo MA, Kante O, Niambele MB, Miura K, Mullen GED, Pierce M, Martin LB, Dolo A, Diallo DA, Doumbo OK, Miller LH, Saul A (2009) A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 27(23):3090–3098. doi:10.1016/j.vaccine.2009.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barry AE, Schultz L, Buckee CO, Reeder JC (2009) Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS One 4(12), e8497. doi:10.1371/journal.pone.0008497

    Article  PubMed  PubMed Central  Google Scholar 

  19. Collins WE, Jeffery GM (1999) A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. Am J Trop Med Hyg 61(1 Suppl):20–35

    Article  CAS  PubMed  Google Scholar 

  20. Winkel KD, Good MF (1991) Inability of Plasmodium vinckei-immune spleen cells to transfer protection to recipient mice exposed to vaccine ‘vectors’ or heterologous species of Plasmodium. Parasite Immunol 13(5):517–530. doi:10.1111/j.1365-3024.1991.tb00548.x

    Article  CAS  PubMed  Google Scholar 

  21. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C (1999) Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 5(3):340–343. doi:10.1038/6560

    Article  CAS  PubMed  Google Scholar 

  22. Dal-Bianco MP, Köster KB, Kombila UD, Kun JFJ, Grobusch MP, Ngoma GM, Matsiegui PB, Supan C, Ospina Salazar CL, Missinou MA, Issifou S, Lell B, Kremsner P (2007) High prevalence of asymptomatic Plasmodium falciparum infection in Gabonese adults. AmJTrop Med Hyg 77(5):939–942

    CAS  Google Scholar 

  23. Ndungu FM, Urban BC, Marsh K, Langhorne J (2005) Regulation of immune response by Plasmodium-infected red blood cells. Parasite Immunol 27(10–11):373–384. doi:10.1111/j.1365-3024.2005.00771.x

    Article  CAS  PubMed  Google Scholar 

  24. Stanisic DI, Good MF (2016) Examining cellular immune responses to inform development of a blood-stage malaria vaccine. Parasitology 143(2):208–223. doi:10.1017/S0031182015001092

    Article  PubMed  Google Scholar 

  25. Patiño JAG, Holder AA, McBride JS, Blackman MJ (1997) Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J Exp Med 186(10):1689–1699. doi:10.1084/jem.186.10.1689

    Article  Google Scholar 

  26. Kyes S, Horrocks P, Newbold C (2001) Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol 55:673–707

    Article  CAS  PubMed  Google Scholar 

  27. Smith JD, Craig AG (2005) The surface of the Plasmodium falciparum-infected erythrocyte. Curr Issues Mol Biol 7(1):81–93

    PubMed  Google Scholar 

  28. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, Waldschmidt TJ, Crompton PD, Harty JT (2011) Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13(2):188–195. doi:10.1038/ni.2180

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hirunpetcharat C, Good MF (1998) Deletion of Plasmodium berghei-specific CD4+ T cells adoptively transferred into recipient mice after challenge with homologous parasite. Proc Natl Acad Sci U S A 95(4):1715–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Horne-Debets JM, Faleiro R, Karunarathne DS, Liu XQ, Lineburg KE, Poh CM, Grotenbreg GM, Hill GR, MacDonald KP, Good MF (2013) PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria. Cell Rep 5(5):1204–1213. doi:10.1016/j.celrep.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  31. Xu HJ, Wipasa J, Yan HR, Zeng M, Makobongo MO, Finkelman FD, Kelso A, Good MF (2002) The mechanism and significance of deletion of parasite-specific CD4+ T cells in malaria infection. J Exp Med 195(7):881–892. doi:10.1084/jem.20011174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, Anderson K, Mahakunkijcharoen Y, Martin LB, Wilson D, Elliott S, Eisen DP, Weinberg JB, Saul A, Good MF (2002) Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360(9333):610–617. doi:10.1016/S0140-6736(02)09784-2

    Article  PubMed  Google Scholar 

  33. Elliott SR, Kuns RD, Good MF (2005) Heterologous immunity in the absence of variant-specific antibodies after exposure to subpatent infection with blood-stage malaria. Infect Immun 73(4):2478–2485. doi:10.1128/iai.73.4.2478-2485.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belnoue E, Voza T, Costa FT, Grüner AC, Mauduit M, Rosa DS, Depinay N, Kayibanda M, Vigário AM, Mazier D (2008) Vaccination with live Plasmodium yoelii blood stage parasites under chloroquine cover induces cross-stage immunity against malaria liver stage. J Immunol 181(12):8552–8558. doi:10.4049/jimmunol.181.12.8552

    Article  CAS  PubMed  Google Scholar 

  35. Nahrendorf W, Spence PJ, Tumwine I, Lévy P, Jarra W, Sauerwein RW, Langhorne J (2015) Blood-stage immunity to Plasmodium chabaudi malaria following chemoprophylaxis and sporozoite immunization. Elife 4, e05165. doi:10.7554/eLife.05165

    Article  PubMed Central  Google Scholar 

  36. Edstein MD, Kotecka BM, Anderson KL, Pombo DJ, Kyle DE, Rieckmann KH, Good MF (2005) Lengthy antimalarial activity of atovaquone in human plasma following atovaquone-proguanil administration. Antimicrob Agents Chemother 49(10):4421–4422. doi:10.1128/aac.49.10.4421-4422.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stils HF (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s Complete and other adjuvants. ILAR J 46(3):280–293. doi:10.1093/ilar.46.3.280

    Article  Google Scholar 

  38. Pinzon-Charry A, McPhun V, Kienzle V, Hirunpetcharat C, Engwerda C, McCarthy J, Good MF (2010) Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice. J Clin Invest 120(8):2967–2978. doi:10.1172/jci39222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Corradetti A, Verolini F, Bucci A (1966) Resistanza a Plasmodium berghei da parte di ratti albini precedentement immunizzati con Plasmodium berghei irradiato. Parassitologia 8:133–145

    Google Scholar 

  40. Waki S, Tamura J, Imanaka M, Ishikawa S, Suzuki M (1982) Plasmodium berghei: isolation and maintenance of an irradiation attenuated strain in the nude mouse. Exp Parasitol 53(3):335–340. doi:10.1016/0014-4894(82)90076-5

    Article  CAS  PubMed  Google Scholar 

  41. Miyagami T, Igarshi I, Suzuki M (1987) Plasmodium berghei: long lasting immunity induced by a permanent attenuated mutant. Zentralbl Bakteriol Mikrobiol Hyg A 264(3):502–512. doi:10.1016/S0176-6724(87)80074-3

    CAS  PubMed  Google Scholar 

  42. Waki S, Yonome I, Suzuki M (1986) Plasmodium yoelii: induction of attenuated mutants by irradiation. Exp Parasitol 62(3):316–321

    Article  CAS  PubMed  Google Scholar 

  43. Gerald NJ, Majam V, Mahajan B, Kozakai Y, Kumar S (2011) Protection from experimental cerebral malaria with a single dose of radiation-attenuated, blood-stage Plasmodium berghei parasites. PLoS One 6(9), e24398. doi:10.1371/journal.pone.0024398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Waki S, Yonome I, Suzuki M (1983) Plasmodium falciparum: attenuation by irradiation. Exp Parasitol 56(3):339–345. doi:10.1016/0014-4894(83)90079-6

    Article  CAS  PubMed  Google Scholar 

  45. Oakley MS, Gerald N, Anantharaman V, Gao Y, Majam V, Mahajan B, Pham PT, Lotspeich-Cole L, Myers TG, McCutchan TF, Morris SL, Aravind L, Kumar S (2013) Radiation-induced cellular and molecular alterations in asexual intraerythrocytic Plasmodium falciparum. J Infect Dis 207(1):164–174. doi:10.1093/infdis/jis645

    Article  CAS  PubMed  Google Scholar 

  46. Ting LM, Gissot M, Coppi A, Sinnis P, Kim K (2008) Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity. Nat Med 14(9):954–958. doi:10.1038/nm.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madrid DC, Ting L-M, Waller KL, Schramm VL, Kim K (2008) Plasmodium falciparum purine nucleoside phosphorylase is critical for viability of malaria parasites. J Biol Chem 283(51):35899–35907. doi:10.1074/jbc.M807218200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. El Bissati K, Zufferey R, Witola WH, Carter NS, Ullman B, Ben Mamoun C (2006) The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 103(24):9286–9291. doi:10.1073/pnas.0602590103

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aly ASI, Downie MJ, Mamoun CB, Kappe SHI (2010) Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice. Cell Microbiol 12(7):930–938. doi:10.1111/j.1462-5822.2010.01441.x

    Article  CAS  PubMed  Google Scholar 

  50. Spaccapelo R, Janse CJ, Caterbi S, Franke-Fayard B, Bonilla JA, Syphard LM, Di Cristina M, Dottorini T, Savarino A, Cassone A, Bistoni F, Waters AP, Dame JB, Crisanti A (2010) Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol 176(1):205–217. doi:10.2353/ajpath.2010.090504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spaccapelo R, Aime E, Caterbi S, Arcidiacono P, Capuccini B, Di Cristina M, Dottorini T, Rende M, Bistoni F, Crisanti A (2011) Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype. Sci Rep 1:39. doi:10.1038/srep00039

    Article  PubMed  PubMed Central  Google Scholar 

  52. Good MF, Reiman JM, Rodriguez IB, Ito K, Yanow SK, El-Deeb IM, Batzloff MR, Stanisic DI, Engwerda C, Spithill T, Hoffman SL, Moses L, McPhun V (2013) Cross-species malaria immunity induced by chemically attenuated parasites. J Clin Invest 123(8):3353. doi:10.1172/JCI66634

    Article  CAS  PubMed Central  Google Scholar 

  53. Sato A, McNulty L, Cox K, Kim S, Scott A, Daniell K, Summerville K, Price C, Hudson S, Kiakos K, Hartley JA, Asao T, Lee M (2005) A novel class of in vivo active anticancer agents: achiral seco-amino- and seco-hydroxycyclopropylbenz[e]indolone (seco-CBI) analogues of the duocarmycins and CC-1065. J Med Chem 48(11):3903–3918. doi:10.1021/jm050179u

    Article  CAS  PubMed  Google Scholar 

  54. Su X, Wellems TE (1996) Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics 33(3):430–444. doi:10.1006/geno.1996.0218

    Article  CAS  PubMed  Google Scholar 

  55. Yanow SK, Purcell LA, Pradel G, Sato A, Rodriguez A, Lee M, Spithill TW (2008) Potent antimalarial and transmission-blocking activities of centanamycin, a novel DNA-binding agent. J Infect Dis 197(4):527–534. doi:10.1086/526788

    Article  CAS  PubMed  Google Scholar 

  56. Purcell LA, Wong KA, Yanow SK, Lee M, Spithill TW, Rodriguez A (2008) Chemically attenuated Plasmodium sporozoites induce specific immune responses, sterile immunity and cross-protection against heterologous challenge. Vaccine 26(38):4880–4884. doi:10.1016/j.vaccine.2008.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Purcell LA, Yanow SK, Lee M, Spithill TW, Rodriguez A (2008) Chemical attenuation of Plasmodium berghei sporozoites induces sterile immunity in mice. Infect Immun 76(3):1193–1199. doi:10.1128/iai.01399-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stanisic DI, Liu XQ, De SL, Batzloff MR, Forbes T, Davis CB, Sekuloski S, Chavchich M, Chung W, Trenholme K, McCarthy JS, Li T, Sim BKL, Hoffman SL, Good MF (2015) Development of cultured Plasmodium falciparum blood-stage malaria cell banks for early phase in vivo clinical trial assessment of anti-malaria drugs and vaccines. Malar J 14:143. doi:10.1186/s12936-015-0663-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Raja AI, Cai Y, Reiman JM, Groves P, Chakravarty S, McPhun V, Doolan DL, Cockburn I, Hoffman SL, Stanisic DI, Good MF (2016) Chemically attenuated blood-stage Plasmodium yoelii parasites induce long-lived and strain-transcending protection. Infect Immun 84(8):2274–88. doi:10.1128/IAI.00157.16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Good .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raja, A.I., Stanisic, D.I., Good, M.F. (2017). Immune Responses to Whole-Organism Blood-Stage Malaria Vaccines. In: Mota, M., Rodriguez, A. (eds) Malaria. Springer, Cham. https://doi.org/10.1007/978-3-319-45210-4_10

Download citation

Publish with us

Policies and ethics