Skip to main content

Formal Modeling and Analysis of Pancreatic Cancer Microenvironment

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9859))

Included in the following conference series:

Abstract

The focus of pancreatic cancer research has been shifted from pancreatic cancer cells towards their microenvironment, involving pancreatic stellate cells that interact with cancer cells and influence tumor progression. To quantitatively understand the pancreatic cancer microenvironment, we construct a computational model for intracellular signaling networks of cancer cells and stellate cells as well as their intercellular communication. We extend the rule-based BioNetGen language to depict intra- and inter-cellular dynamics using discrete and continuous variables respectively. Our framework also enables a statistical model checking procedure for analyzing the system behavior in response to various perturbations. The results demonstrate the predictive power of our model by identifying important system properties that are consistent with existing experimental observations. We also obtain interesting insights into the development of novel therapeutic strategies for pancreatic cancer.

This work was partially supported by ONR Award (N00014-13-1-0090), NSF CPS Breakthrough (CNS-1330014), NSF CPS Frontier (CNS-1446725), and NIH award U54HG008540.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Personal communication with Jeffrey M Clarke, MD (Duke University School of Medicine)

    Google Scholar 

  2. Supplementary document. http://www.cs.cmu.edu/~qinsiw/cmsb2016/supplementary_doc.pdf

  3. World Cancer Report 2014, World Health Organization (2014)

    Google Scholar 

  4. Albert, R., Thakar, J.: Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdisc. Rev. Syst. Biol. Med. 6(5), 353–369 (2014)

    Article  Google Scholar 

  5. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, London (2006)

    MATH  Google Scholar 

  6. Altrock, P.M., Liu, L.L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15(12), 730–745 (2015)

    Article  Google Scholar 

  7. Apte, M., Park, S., Phillips, P., Santucci, N., Goldstein, D., Kumar, R., Ramm, G., Buchler, M., Friess, H., McCarroll, J., et al.: Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29(3), 179–187 (2004)

    Article  Google Scholar 

  8. Bardeesy, N., DePinho, R.A.: Pancreatic cancer biology and genetics. Nat. Rev. Cancer 2(12), 897–909 (2002)

    Article  Google Scholar 

  9. Bensaid, M., Tahiri-Jouti, N., Cambillau, C., Viguerie, N., Colas, B., Vidal, C., Tauber, J., Esteve, J., Susini, C., Vaysse, N.: Basic fibroblast growth factor induces proliferation of a rat pancreatic cancer cell line: inhibition by somatostatin. Int. J. Cancer 50(5), 796–799 (1992)

    Article  Google Scholar 

  10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Dunér, S., Lindman, J.L., Ansari, D., Gundewar, C., Andersson, R.: Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology 10(6), 673–681 (2011)

    Article  Google Scholar 

  12. Erkan, M., Hausmann, S., Michalski, C.W., Fingerle, A.A., Dobritz, M., Kleeff, J., Friess, H.: The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol. 9(8), 454–467 (2012)

    Article  Google Scholar 

  13. Erkan, M., Reiser-Erkan, C., Michalski, C., Kleeff, J.: Tumor microenvironment and progression of pancreatic cancer. Exp. Oncol. 32(3), 128–131 (2010)

    Google Scholar 

  14. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with bionetgen. In: Maly, I.V. (ed.) Systems Biology. MMB, vol. 500, pp. 113–167. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Farrow, B., Albo, D., Berger, D.H.: The role of the tumor microenvironment in the progression of pancreatic cancer. J. Surg. Res. 149(2), 319–328 (2008)

    Article  Google Scholar 

  16. Feig, C., Gopinathan, A., Neesse, A., Chan, D.S., Cook, N., Tuveson, D.A.: The pancreas cancer microenvironment. Clin. Cancer Res. 18(16), 4266–4276 (2012)

    Article  Google Scholar 

  17. Gong, H.: Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst. Biol. 7(Suppl. 3), S5 (2013)

    Article  Google Scholar 

  18. Gong, H., Wang, Q., Zuliani, P., Faeder, J.R., Lotze, M., Clarke, E.: Symbolic model checking of signaling pathways in pancreatic cancer. In: 3rd International Conference on Bioinformatics and Computational Biology, p. 245 (2011)

    Google Scholar 

  19. Gong, H., Zuliani, P., Wang, Q., Clarke, E.M.: Formal analysis for logical models of pancreatic cancer. In: 50th IEEE Conference on Decision and Control and European Control Conference, pp. 4855–4860 (2011)

    Google Scholar 

  20. Haber, P.S., Keogh, G.W., Apte, M.V., Moran, C.S., Stewart, N.L., Crawford, D.H., Pirola, R.C., McCaughan, G.W., Ramm, G.A., Wilson, J.S.: Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am. J. Pathol. 155(4), 1087–1095 (1999)

    Article  Google Scholar 

  21. Hippert, M.M., O’Toole, P.S., Thorburn, A.: Autophagy in cancer: good, bad, or both? Cancer Res. 66(19), 9349–9351 (2006)

    Article  Google Scholar 

  22. Hurwitz, H., Uppal, N., Wagner, S., Bendell, J., Beck, J., Wade, S., Nemunaitis, J., Stella, P., Pipas, J., Wainberg, Z., et al.: A randomized double-blind phase 2 study of ruxolitinib (RUX) or placebo (PBO) with capecitabine (CAPE) as second-line therapy in patients (pts) with metastatic pancreatic cancer (mPC). J. Clin. Oncol. 32, 55 (2014)

    Google Scholar 

  23. Jaster, R.: Molecular regulation of pancreatic stellate cell function. Mol. Cancer 3(1), 26 (2004)

    Article  Google Scholar 

  24. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Kleeff, J., Beckhove, P., Esposito, I., Herzig, S., Huber, P.E., Löhr, J.M., Friess, H.: Pancreatic cancer microenvironment. Int. J. Cancer 121(4), 699–705 (2007)

    Article  Google Scholar 

  26. Kondo, Y., Kanzawa, T., Sawaya, R., Kondo, S.: The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5(9), 726–734 (2005)

    Article  Google Scholar 

  27. Mahadevan, D., Von Hoff, D.D.: Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol. Cancer Ther. 6(4), 1186–1197 (2007)

    Article  Google Scholar 

  28. Mariño, G., Niso-Santano, M., Baehrecke, E.H., Kroemer, G.: Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15(2), 81–94 (2014)

    Article  Google Scholar 

  29. Masamune, A., Satoh, M., Kikuta, K., Suzuki, N., Satoh, K., Shimosegawa, T.: Ellagic acid blocks activation of pancreatic stellate cells. Biochem. Pharmacol. 70(6), 869–878 (2005)

    Article  Google Scholar 

  30. Maus, C., Rybacki, S., Uhrmacher, A.M.: Rule-based multi-level modeling of cell biological systems. BMC Syst. Biol. 5(1), 166 (2011)

    Article  Google Scholar 

  31. Muilenburg, D., Parsons, C., Coates, J., Virudachalam, S., Bold, R.J.: Role of autophagy in apoptotic regulation by Akt in pancreatic cancer. Anticancer Res. 34(2), 631–637 (2014)

    Google Scholar 

  32. Murphy, L., Cluck, M., Lovas, S., Ötvös, F., Murphy, R., Schally, A., Permert, J., Larsson, J., Knezetic, J., Adrian, T.: Pancreatic cancer cells require an EGF receptor-mediated autocrine pathway for proliferation in serum-free conditions. Br. J. Cancer 84(7), 926 (2001)

    Article  Google Scholar 

  33. Phillips, P., Wu, M., Kumar, R., Doherty, E., McCarroll, J., Park, S., Pirola, R.C., Wilson, J., Apte, M.: Cell migration: a novel aspect of pancreatic stellate cell biology. Gut 52(5), 677–682 (2003)

    Article  Google Scholar 

  34. Siegel, P.M., Massagué, J.: Cytostatic and apoptotic actions of TGF-\(\beta \) in homeostasis and cancer. Nat. Rev. Cancer 3(11), 807–820 (2003)

    Article  Google Scholar 

  35. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183 (2011)

    Article  Google Scholar 

  36. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks - I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57(2), 247–276 (1995)

    Article  MATH  Google Scholar 

  37. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: IEEE 26th Annual Symposium on Foundations of Computer Science, pp. 327–338 (1985)

    Google Scholar 

  38. Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., Seay, T., Tjulandin, S.A., Ma, W.W., Saleh, M.N., et al.: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369(18), 1691–1703 (2013)

    Article  Google Scholar 

  39. Vonlaufen, A., Joshi, S., Qu, C., Phillips, P.A., Xu, Z., Parker, N.R., Toi, C.S., Pirola, R.C., Wilson, J.S., Goldstein, D., et al.: Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res. 68(7), 2085–2093 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, Q., Miskov-Zivanov, N., Liu, B., Faeder, J.R., Lotze, M., Clarke, E.M. (2016). Formal Modeling and Analysis of Pancreatic Cancer Microenvironment. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham. https://doi.org/10.1007/978-3-319-45177-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45177-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45176-3

  • Online ISBN: 978-3-319-45177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics