Skip to main content

Goal-Oriented Reduction of Automata Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9859))

Abstract

We consider networks of finite-state machines having local transitions conditioned by the current state of other automata. In this paper, we introduce a reduction procedure tailored for reachability properties of the form “from global state \({s}\), there exists a sequence of transitions leading to a state where an automaton g is in a local state \(\top \)”. By analysing the causality of transitions within the individual automata, the reduction identifies local transitions which can be removed while preserving all the minimal traces satisfying the reachability property. The complexity of the procedure is polynomial with the total number of local transitions, and exponential with the maximal number of local states within an automaton. Applied to Boolean and multi-valued networks modelling dynamics of biological systems, the reduction can shrink down significantly the reachable state space, enhancing the tractability of the model-checking of large networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Scripts and models available at http://loicpauleve.name/gored-suppl.zip.

References

  1. Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.: Model checking to assess T-helper cell plasticity. Front. Bioeng. Biotechnol. 2, 86 (2015)

    Google Scholar 

  2. Aracena, J., Goles, E., Moreira, A., Salinas, L.: On the robustness of update schedules in Boolean networks. Biosystems 97(1), 1–8 (2009)

    Article  Google Scholar 

  3. Bernardinello, L., De Cindio, F.: A survey of basic net models and modular net classes. In: Rozenberg, G. (ed.) Advances in Petri Nets 1992. LNCS, vol. 609, pp. 304–351. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  4. Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg, G. (ed.) Advances in Petri Nets 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  5. Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a PowerPC\(^{\rm TM}\) microprocessor using symbolic model checking without BDDs. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Heidelberg (2014)

    Google Scholar 

  7. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoret. Comput. Sci. 147(1&2), 117–136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  10. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLoS Comput. Biol. 11(11), e1004571 (2015)

    Article  Google Scholar 

  11. I. Curie/Sysbio. RB/E2F pathway. http://bioinfo-out.curie.fr/projects/rbpathway/

  12. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

    Google Scholar 

  13. Esparza, J., Heljanko, K.: Unfoldings: A Partial-Order Approach to Model Checking. Monographs in Theoretical Computer Science. An EATCS Series, 1st edn. Springer Publishing Company, Incorporated, New York (2008)

    MATH  Google Scholar 

  14. Feret, J., Koeppl, H., Petrov, T.: Stochastic fragments: a framework for the exact reduction of the stochastic semantics of rule-based models. Int. J. Softw. Inf. 7(4), 527–604 (2013)

    Google Scholar 

  15. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

    Article  Google Scholar 

  16. C. group: Logicalmodel. https://github.com/colomoto/logicalmodel

  17. Haddad, S., Pradat-Peyre, J.-F.: New efficient Petri nets reductions for parallel programs verification. Parallel Process. Lett. 16(1), 101–116 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundam. Inf. 94(3–4), 413–437 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł.: Step traces. Acta Informatica 53, 35–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janicki, R., Lauer, P.E., Koutny, M., Devillers, R.: Concurrent and maximally concurrent evolution of nonsequential systems. Theoret. Comput. Sci. 43, 213–238 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform. 7(1), 56 (2006)

    Article  Google Scholar 

  22. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  23. LIP6/Move: Its tools. http://ddd.lip.6.fr/itstools.php

  24. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property preserving abstractions for the verification of concurrent systems. Formal Methods Syst. Des. 6(1), 11–44 (1995)

    Article  MATH  Google Scholar 

  25. Madelaine, G., Lhoussaine, C., Niehren, J.: Attractor equivalence: an observational semantics for reaction networks. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 82–101. Springer, Heidelberg (2014)

    Google Scholar 

  26. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction of logical regulatory graphs. Theoret. Comput. Sci. 412(21), 2207–2218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paulevé, L.: PINT - Static analyzer for dynamics of automata networks. http://loicpauleve.name/pint

  28. Paulevé, L., Andrieux, G., Koeppl, H.: Under-approximating cut sets for reachability in large scale automata networks. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 69–84. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using abstract interpretation. Math. Struct. Comput. Sci. 22(04), 651–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Priese, L., Wimmel, H.: A uniform approach to true-concurrency and interleaving semantics for Petri nets. Theoret. Comput. Sci. 206(1–2), 219–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saez-Rodriguez, J., Simeoni, L., Lindquist, J.A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.-U., Weismantel, R., Gilles, E.D., Klamt, S., Schraven, B.: A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), e163 (2007)

    Article  MathSciNet  Google Scholar 

  32. Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1–20 (2009)

    Article  Google Scholar 

  33. Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.: The logic of EGFR/ERBB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)

    Article  Google Scholar 

  34. Schnoebelen, P., Sidorova, N.: Bisimulation and the reduction of Petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 409–423. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  35. Schwoon, S.: Mole. http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

  36. Sifakis, J.: Property preserving homomorphisms of transition systems. In: Clarke, E., Kozen, D. (eds.) Logics of Programs. LNCS, vol. 164, pp. 458–473. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  37. Talcott, C., Dill, D.L.: Multiple representations of biological processes. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 221–245. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Weinstein, N., Mendoza, L.: A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front. Genet. 4(112) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Paulevé .

Editor information

Editors and Affiliations

Appendices

A Proof of Minimal Traces Preservation

We assume a global AN \((\varSigma ,S,T)\) where \(g\in \varSigma \), \(g_\top \in S(g)\), and \({s}\in S\) with \({s}(g)\ne g_\top \).

From Property 1 and Definition 7, any trace reaching first \(a_i\) and then \(a_j\) uses all the transitions of at least one local path in \({\text {local-paths}}_{{s}}({{a}_{i}}\!\leadsto \!{{a}_{j}})\).

We first prove with Lemma 2 that the last transition of a minimal trace \(\pi \) for \(g_\top \) reachability, of the form \(\pi ^{|\pi |}=\{{g}_{i} \rightarrow {g}_{\top }\}\), is necessarily in \({\text {tr}}(\mathcal B)\). Indeed, by definition of \(\mathcal B\), \({{g}_{0}}\!\leadsto \!{{g}_{\top }}\in \mathcal B\); and by Lemma 1, \({g}_{i} \rightarrow {g}_{\top }\notin {\text {local-paths}}_{{s}}({{g}_{0}}\!\leadsto \!{{g}_{\top }})\) implies that reaching \(g_i\) requires to reach \(g_\top \) beforehand.

Lemma 1

Given \({a}_{j} \rightarrow {a}_{i}\in T\), if \({a}_{j} \rightarrow {a}_{i} \notin {\text {tr}}({\text {local-paths}}_{{s}}({{a}_{0}}\!\leadsto \!{{a}_{i}}))\), then for any trace \(\pi \) from \({s}\) with \(a_j\in \pi ^v {}^\bullet \) and \(a_i\in \pi ^w {}^\bullet \) for some \(v,w\in [1;|\pi |]\), there exists \(u<v\) with \(a_i\in \pi ^u {}^\bullet \).

Proof

Let \(\eta \in {\text {local-paths}}_{{s}}({{a}_{0}}\!\leadsto \!{{a}_{j}})\) be an acyclic local path such that \(\forall n\in [1;|\eta |]\), \(a_i\ne {\text {dest}}(\eta ^n)\). The sequence \(\eta \!::\!{a}_{j} \rightarrow {a}_{i}\) is then acyclic and, by definition, belongs to \({\text {local-paths}}_{{s}}({{a}_{0}}\!\leadsto \!{{a}_{i}})\), which is a contradiction.    \(\square \)

Lemma 2

If \(\pi \) is a minimal trace for \(g_\top \) reachability from state \({s}\), then, necessarily, \(\pi ^{|\pi |}\subseteq {\text {tr}}(\mathcal B)\).

Proof

As \(\pi \) is minimal for \(g_\top \) reachability, without loss of generality, we can assume that \(\pi ^{|\pi |} = \{{g}_{i} \rightarrow {g}_{\top }\}\). By definition, \({\text {tr}}({\text {local-paths}}_{{s}}({{g}_{0}}\!\leadsto \!{{g}_{\top }}))\subseteq {\text {tr}}(\mathcal B)\). By Lemma 1, if \({g}_{i} \rightarrow {g}_{\top }\notin {\text {tr}}({\text {local-paths}}_{{s}}({{g}_{0}}\!\leadsto \!{{g}_{\top }}))\), then there exists \(u < |\pi |\) such that \(g_\top \in \pi ^u {}^\bullet \); hence, \(\pi \) would be non minimal.    \(\square \)

The rest of the proof of Theorem 1 is derived by contradiction: if a transition of \(\pi \) is not in \({\text {tr}}(\mathcal B)\), we can build a sub-trace of \(\pi \) which preserves \(g_\top \) reachability, therefore \(\pi \) is not minimal.

Given a transition \({a}_{i} \rightarrow {a}_{j}\) in the q-th step of \(\pi \) that is not in \({\text {tr}}(\mathcal B)\), removing \({a}_{i} \rightarrow {a}_{j}\) from \(\pi ^q\) would imply to remove any further transition that depend causally on it. Two cases arise from this fact: either all further transitions that depend on \(a_j\) must be removed; or \({a}_{i} \rightarrow {a}_{j}\) is part of loop within automaton a, and it is sufficient to remove the loop from \(\pi \).

Lemma 3 ensures that if \({{a}_{z}}\!\leadsto \!{{a}_{k}}\) is in \(\mathcal B\) and if \(a_z\) occurs before the q-th step and \(a_k\) after the q-th step of \(\pi \), then \({a}_{i} \rightarrow {a}_{j}\notin {\text {tr}}({\text {local-paths}}_{{s}}({{a}_{z}}\!\leadsto \!{{a}_{k}}))\) only if \({a}_{i} \rightarrow {a}_{j}\) is part of a loop, i.e., there are two steps surrounding q where the automaton a is in the same state before their application.

Lemma 3

Given \(a\in \varSigma \) and \(u,q,v\in [1;|\pi |]\), \(u\le q< v\), with \(a_z \in {}^\bullet \pi ^u \), \(a_k \in {}^\bullet \pi ^v \cup \pi ^v {}^\bullet \), and \({a}_{i} \rightarrow {a}_{j}\in \pi ^q\setminus {\text {tr}}(\mathcal B)\), if \({{a}_{z}}\!\leadsto \!{{a}_{k}}\in \mathcal B\) then \(\exists m,n\in [u;v]\), \(m\le q\le n\) such that \( (\pi ^{1..m-1}) {}^\bullet \cap S(a) = (\pi ^{1..n}) {}^\bullet \cap S(a)\); and \(a_k\in {}^\bullet \pi ^v \Rightarrow n <v\).

Proof

If \({a}_{i} \rightarrow {a}_{j}\notin {\text {tr}}(\mathcal B)\) and \({{a}_{z}}\!\leadsto \!{{a}_{k}}\in {\text {tr}}(\mathcal B)\), necessarily \({a}_{i} \rightarrow {a}_{j}\notin {\text {tr}}({\text {local-paths}}_{{s}}({{a}_{z}}\!\leadsto \!{{a}_{k}}))\). Therefore \({a}_{i} \rightarrow {a}_{j}\) belongs to a loop of a local path from \(a_z\) (at index u in \(\pi \)) to \(a_k\) (at index v in \(\pi \)). Hence, \(\exists m,n\in [u;v]\) with \(m \le q \le n\) and \(a_h,a_x,a_y\in S(a)\) such that \({a}_{h} \rightarrow {a}_{x}\in \pi ^m\) and \({a}_{y} \rightarrow {a}_{h}\in \pi ^n\); therefore \( (\pi ^{1..m-1}) {}^\bullet \cap S(a) = (\pi ^{1..n}) {}^\bullet \cap S(a) = a_h\). In the case where \(a_k\in {}^\bullet \pi ^v \), \(a_k\ne a_h\), hence \(n < v\).    \(\square \)

Intuitively, Lemma 3 imposes that \(\pi \) has the following form:

given that \({{a}_{z}}\!\leadsto \!{{a}_{k}}\in \mathcal B\).

The idea is then to remove the transitions forming the loop within automaton a. However, transitions in other automata may depend causally on the transitions that compose the local loop in automaton a within steps m and n, following the notations in Lemma 3.

Lemma 4 establishes that we can always find m and n such that none of the transitions within these steps with an enabling condition depending on automaton a are in \({\text {tr}}(\mathcal B)\). Indeed, if a transition in \({\text {tr}}(\mathcal B)\) depends on a local state of a, let us call it \(a_p\), the objectives \({{a}_{0}}\!\leadsto \!{{a}_{p}}\) and \({{a}_{p}}\!\leadsto \!{{a}_{k}}\) are in \(\mathcal B\), due to the second and third condition in Definition 8. Lemma 3 can then be applied on the subpart of \(\pi \) that contains the transition \({a}_{i} \rightarrow {a}_{j}\) not in \({\text {tr}}(\mathcal B)\) and that concretizes either \({{a}_{0}}\!\leadsto \!{{a}_{p}}\) or \({{a}_{p}}\!\leadsto \!{{a}_{k}}\) to identify a smaller loop containing \({a}_{i} \rightarrow {a}_{j}\).

Lemma 4

Let us assume \(a\in \varSigma \) and \(q\in [1;|\pi |]\) with \({a}_{i} \rightarrow {a}_{j}\in \pi ^q\setminus {\text {tr}}(\mathcal B)\). There exists \(m,n\in [1;|\pi |]\) with \(m\le q\le n\) such that \(\forall t\in {\text {tr}}(\pi ^{m+1..n})\), \({\text {enab}}(t)\cap S(a)\ne \emptyset \Rightarrow t\notin {\text {tr}}(\mathcal B)\), and, if \(a=g\) or \(\exists t\in {\text {tr}}(\pi ^{n+1..|\pi |})\cap {\text {tr}}(\mathcal B)\) with \({\text {enab}}(t)\cap S(a)\ne \emptyset \), then \( (\pi ^{1..m-1}) {}^\bullet \cap S(a) = (\pi ^{1..n}) {}^\bullet \cap S(a)\).

Proof

First, let us assume that \(a\ne g\) and for any \(t\in \pi ^{q+1..|\pi |}\), \({\text {enab}}(t)\cap S(a)\ne \emptyset \Rightarrow t\notin {\text {tr}}(\mathcal B)\): the lemma is verified with \(m=q\) and \(n=|\pi |\).

Then, let us assume there exists \(v\in [q+1;|\pi |]\) such that \(\exists t\in {\text {tr}}(\pi ^v)\cap {\text {tr}}(\mathcal B)\) with \(a_k\in {\text {enab}}(t)\). By Definition 8, this implies \({{a}_{0}}\!\leadsto \!{{a}_{k}}\in \mathcal B\). By Lemma 3, there exists \(m,n\in [1;v-1]\) with \(m\le q\le n\) such that \( (\pi ^{1..m-1}) {}^\bullet \cap S(a) = (\pi ^{1..n}) {}^\bullet \cap S(a)\).

Otherwise, \(a=g\), and by Lemma 3 with \(a_k=g_\top \), there exists \(m,n\in [1;|\pi |]\) with \(m\le q\le n\) and \(m\ne n\) such that \( (\pi ^{1..m-1}) {}^\bullet \cap S(a) = (\pi ^{1..n}) {}^\bullet \cap S(a)\). Remark that it is necessary that \(n < |\pi |\): if \(n=|\pi |\), \(g_\top \in (\pi ^{1..m-1}) {}^\bullet \), so \(\pi \) would be not minimal.

In both cases, if there exists \(r\in [m+1;n]\) such that \(\exists a_p\in S(a)\) and \(\exists t\in \pi ^r\) with \(a_p\in {\text {enab}}(t)\), then \(t\in {\text {tr}}(\mathcal B)\) implies that \({{a}_{0}}\!\leadsto \!{{a}_{p}}\in \mathcal B\) and \({{a}_{p}}\!\leadsto \!{{a}_{k}}\in \mathcal B\) (Definition 8). If \(r > q\), by Lemma 3 with \(a_k=a_p\) and \(v=r\), there exists \(m',n'\in [m+1;n]\) such that \(m' \le q \le n' < r\le n\) with \( (\pi ^{1..m'-1}) {}^\bullet \cap S(a) = (\pi ^{1..n'}) {}^\bullet \cap S(a)\). If \(r \le q\), by Lemma 3 with \(a_0=a_p\) and \(u=r\), there exists \(m',n'\in [m+1;n]\) such that \(r \le m' \le q \le n'\) with \( (\pi ^{1..m'-1}) {}^\bullet \cap S(a) = (\pi ^{1..n'}) {}^\bullet \cap S(a)\). Therefore, by induction with Lemma 3, there exists \(m,n\in [1;|\pi |]\) such that \(\forall t\in {\text {tr}}(\pi ^{m+1..n})\), \({\text {enab}}(t)\cap S(a)\ne \emptyset \Rightarrow t\notin {\text {tr}}(\mathcal B)\).    \(\square \)

Using Lemma 4, we show how we can identify a subset of transitions in \(\pi \) that can be removed to obtain a sub-trace for \(g_\top \) reachability. In the following, we refer to the couple (mn) of Lemma 4 with \({\text {cb}}(\pi ,a,q)\) (Definition 9).

Definition 9

( \({\text {cb}}(\pi ,a,q)\) ). Given \(a\in \varSigma \), \(q\in [1;|\pi |]\) with \(t\in \pi ^q\setminus {\text {tr}}(\mathcal B)\) and \(\varSigma (t)=a\), we define \({\text {cb}}(\pi ,a,q) = (m,n)\) where \(m,n\in [1;|\pi |]\) such that:

  • \(\forall t\in {\text {tr}}(\pi ^{m+1..n})\), \({\text {enab}}(t)\cap S(a)\ne \emptyset \Rightarrow t\notin {\text {tr}}(\mathcal B)\);

  • \(a=g\vee \exists t\in {\text {tr}}(\pi ^{n+1..|\pi |})\cap {\text {tr}}(\mathcal B)\) with \({\text {enab}}(t)\cap S(a)\ne \emptyset \) \(\Longrightarrow \) \( (\pi ^{1..m-1}) {}^\bullet \cap S(a) = (\pi ^{1..n}) {}^\bullet \cap S(a)\). Moreover, if \(a=g\), then \(n<|\pi |\).

We use Lemma 4 to collect the portions of \(\pi \) to redact according to each automaton. We start from the last transition in \(\pi \) that is not in \({\text {tr}}(\mathcal B)\): if \({\text {tr}}(\pi )\not \subseteq {\text {tr}}(\mathcal B)\), there exists \(l \in [1;|\pi |]\) such that \(\pi ^l\not \subseteq {\text {tr}}(\mathcal B)\) and \(\forall n>l, \pi ^n\subseteq {\text {tr}}(\mathcal B)\). By Lemma 2, we know that \(l < |\pi |\). Let us denote by \({b}_{i} \rightarrow {b}_{j}\) one of the transitions in \(\pi ^l\) which is not in \({\text {tr}}(\mathcal B)\).

We define \(\varPsi \subseteq \varSigma \times [1;|\pi |]\times [1;|\pi |]\) the smallest set which satisfies:

  • \((b,m,n) \in \varPsi \) if \({\text {cb}}(\pi ,l,b) = (m,n)\)

  • \(\forall (a,m,n)\in \varPsi \), \(\forall q\in [m+1;n]\), \(\forall t\in \pi ^q\), \({\text {enab}}(t)\cap S(a)\ne \emptyset \Longrightarrow (\varSigma (t),m',n') \in \varPsi \) where \({\text {cb}}(\pi ,q,\varSigma (t)) = (m',n')\).

Finally, let us define the sequence of steps \(\varpi \) as the sequence of steps \(\pi \) where the transitions delimited by \(\varPsi \) are removed: for each \((a,m,n)\in \varPsi \), all the transitions of automaton a occurring between \(\pi ^m\) and \(\pi ^n\) are removed. Formally, \(|\varpi |=|\pi |\) and for all \(q\in [1;|\pi |]\), \(\varpi ^q \mathop {=}\limits ^{\varDelta }\{ t \in \pi ^q\mid \not \exists (a,m,n)\in \varPsi : a=\varSigma (t) \wedge m\le q\le n \}\).

From Lemma 4 and \(\varPsi \) definition, \(\varpi \) is a valid trace. Moreover, by Lemma 4, there is no \(q\in [1;|\pi |]\) such that \((g,q,|\pi |)\in \varPsi \), hence \(g_\top \in \varpi {}^\bullet \). Therefore, \(\pi \) is not minimal, which contradicts our hypothesis. \(\square \)

Example 2

Let us consider the reachability of \(c_2\) in the AN of Fig. 1 from state \(\langle {A_0,b_0,c_0,d_0}\rangle \). The transitions \({\text {tr}}(\mathcal B)\) preserved by the reduction for that goal are listed in Fig. 2.

Let \(\pi \) be the following trace in the AN of Fig. 1:

The latest transition not in \({\text {tr}}(\mathcal B)\) is \( {b}_{1} \xrightarrow {\{a_0\}} {b}_{0}\) at step 4. One can compute \({\text {cb}}(\pi ,4,b)=(2,4)\), and as there is no transition involving b between steps 3 and 4, \(\varPsi = \{(b,2,4)\}\); therefore, the sequence

$$\begin{aligned} \varpi =\{ {a}_{0} \xrightarrow {\{b_0\}} {a}_{1}\}\!::\!\{ {c}_{0} \xrightarrow {\{a_1\}} {c}_{1}\}\!::\!\{ {a}_{1} \xrightarrow {\emptyset } {a}_{0}\}\!::\!\{\}\!::\!\{ {c}_{1} \xrightarrow {\{b_0\}} {c}_{2}\} \end{aligned}$$

is a valid sub-trace of \(\pi \) reaching \(c_2\), proving \(\pi \) non-minimality.

In conclusion, if \(\pi \) is a minimal trace for \(g_\top \) reachability from state \({s}\), then, \({\text {tr}}(\pi )\subseteq {\text {tr}}(\mathcal B)\).

B Experiments with Partial Reduction

The goal-oriented reduction relies on two intertwined analyses of the local causality in ANs: (1) the computation of potentially involved objectives (Sect. 3.2) and (2) the filtering of objective that can be proven impossible (Sect. 3.1). The second part can be considered optional: one could simply define the predicate \({\mathbf {valid}}_{{s}}\) to be always true. In order to appreciate the effect of this second part, we show here the intermediary results of model reduction without the filtering of impossible objectives. It is shown in table below, in the lines in italic. As we can see, for some models it has no effect on the reduction, for some others the filtering parts is necessary to obtained important reduction of the state space (e.g., MAPK, TCell-r (94), TCell-d).

Model

# tr

# states

|unf|

EGF-r (20)

68

4,200

1,749

43

722

336

43

722

336

Wnt (32)

197

7,260,160

KO

134

241,060

217,850

117

241,060

217,850

TCell-r (40)

90

\(\approx 1.2\cdot 10^{11}\)

KO

46

25,092

14,071

46

25,092

14,071

MAPK (53) profile 1

173

\(\approx 3.8\cdot 10^{12}\)

KO

147

\(\approx 9\cdot 10^{10}\)

KO

113

\(\mathbf {\approx 4.5\cdot 10^{10}}\)

KO

MAPK (53) profile 2

173

8,126,465

KO

148

1,523,713

KO

69

269,825

155,327

VPC (88)

332

KO

KO

278

\(\approx 2.9\cdot 10^{12}\)

185,006

219

\(\mathbf {1.8\cdot 10^9}\)

43,302

TCell-r (94)

217

KO

KO

112

KO

KO

42

54.921

1,017

TCell-d (101) profile 1

384

\(\approx 2.7\cdot 10^8\)

257

275

\(\approx 1.1\cdot 10^8\)

159

0

1

1

TCell-d (101) profile 2

384

KO

KO

253

\(\approx 2.4\cdot 10^{12}\)

KO

161

75,947,684

KO

EGF-r (104) profile 1

378

9,437,184

47,425

120

12,288

1,711

0

1

1

EGF-r (104) profile 2

378

\(\approx 2.7 \cdot 10^{16}\)

KO

124

\(\approx 2\cdot 10^9\)

KO

69

62,914,560

KO

RBE2F (370)

742

KO

KO

56

2,350,494

28,856

56

2,350,494

28,856

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Paulevé, L. (2016). Goal-Oriented Reduction of Automata Networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham. https://doi.org/10.1007/978-3-319-45177-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45177-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45176-3

  • Online ISBN: 978-3-319-45177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics