Skip to main content

An Overview on Microbial Degradation of Lindane

  • Chapter
  • First Online:
Microbe-Induced Degradation of Pesticides

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Lindane is a cyclic, saturated and highly chlorinated pesticide with a broad spectrum, which has been used worldwide for many decades to control a variety of pests, and also in human health and veterinary. Afterward, it has been demonstrated that lindane and its isomers may cause serious damage to health in the short and long term. Besides, lindane is known to be persistent in the environment and tends to bioaccumulate along the food chain. Thus, lindane residues remain in the environment for a long time and have been recently found in water, soil, sediments, plants, and animals all over the world, and even in human fluids and tissues. In this context, nowadays, scientists, working all over the world, are involved in developing lindane remediation technologies including physical, chemical, and biological techniques. This article provides updated information on the biologic degradation of lindane using different microorganisms such as bacteria, fungi, and algae, under both aerobic and anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alani, R., Drouillard, K., Olayinka, K., & Alo, B. (2013). Bioaccumulation of organochlorine pesticide residues in fish and invertebrates of Lagos Lagoon, Nigeria. American Journal of Scientific and Industrial Research, 4, 22–30.

    Article  Google Scholar 

  • Alvarez, A., Yanez, M. L., Benimeli, C. S., & Amoroso, M. J. (2012). Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. International Biodeterioration and Biodegradation, 66, 14–18.

    Article  Google Scholar 

  • Aslam, M., Rais, S., & Alam, M. (2013). Quantification of organochlorine pesticide residues in the buffalo milk samples of Delhi City, India. Journal of Environmental Protection, 4, 964–974.

    Article  Google Scholar 

  • ATSDR (2011) Agency for Toxic Substances and Disease Registry. Hexachlorocyclohexane (HCH). Atlanta, USA.

    Google Scholar 

  • Awasthi, N., Ahuja, R., & Kumar, A. (2000). Factors influencing the degradation of soil applied endosulfan isomers. Soil Biology and Biochemistry, 32, 1697–1705.

    Article  Google Scholar 

  • Badea, S. L., Vogt, C., Weber, S., Danet, A. F., & Richnow, H. H. (2009). Stable isotope fractionation of gamma-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environmental Science and Technology, 43, 3155–3161.

    Article  Google Scholar 

  • Barnhoorn, I. E. J., van Dyk, J. C., Genthe, B., Harding, W. R., Wagenaar, G. M., & Bornman, M. S. (2015). Organochlorine pesticide levels in Clarias gariepinus from polluted freshwater impoundments in South Africa and associated human health risks. Chemosphere, 120, 391–397.

    Article  Google Scholar 

  • Becerra-Castro, C., Kidd, P. S., Rodríguez-Garrido, B., Monterroso, C., Santos-Ucha, P., & Prieto-Fernández, A. (2013). Phytoremediation of hexachlorocyclohexane (HCH) contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environmental Pollution, 178, 202–210.

    Article  Google Scholar 

  • Bempah, C. K., & Donkor, A. K. (2011). Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environmental Monitoring and Assessment, 175, 551–561.

    Article  Google Scholar 

  • Benimeli, C. S., Amoroso, M. J., Chaile, A. P., & Castro, G. R. (2003). Screening of organochlorine pesticides removal by aquatic streptomycetes. Bioresource Technology, 89, 133–138.

    Article  Google Scholar 

  • Benimeli, C. S., Castro, G. R., Chaile, A. P., & Amoroso, M. J. (2006). Lindane removal induction by Streptomyces sp. M7. Journal of Basic Microbiology, 46, 348–357.

    Article  Google Scholar 

  • Benimeli, C. S., Castro, G. R., Chaile, A. P., & Amoroso, M. J. (2007a). Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. International Biodeterioration and Biodegradation, 59, 148–155.

    Article  Google Scholar 

  • Benimeli, C. S., Fuentes, M. S., Abate, C. M., & Amoroso, M. J. (2008). Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. International Biodeterioration and Biodegradation, 61, 233–239.

    Article  Google Scholar 

  • Benimeli, C. S., Gonzalez, A. J., Chaile, A. P., & Amoroso, M. J. (2007b). Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. Journal of Basic Microbiology, 47, 468–473.

    Article  Google Scholar 

  • Bidlan, R., Afsar, M., & Manonmani, H. K. (2004). Bioremediation of HCH-contaminated soil: Elimination of inhibitory effects of the insecticide on radish and green gram seed germination. Chemosphere, 56, 803–811.

    Article  Google Scholar 

  • Caicedo, P., Schroder, A., Ulrich, N., Schroter, U., Paschke, A., Schuurmann, G., et al. (2011). Determination of lindane leachability in soil–biosolid systems and its bioavailability in wheat plants. Chemosphere, 84, 397–402.

    Article  Google Scholar 

  • Calvelo Pereira, R., Camps-Arbestain, M., Rodríguez Garrido, B., Macías, F., & Monterroso, C. (2006). Behaviour of α-, β-, γ-, and δ-hexachlorocyclohexane in the soil-plant system of a contaminated site. Environmental Pollution, 144, 210–217.

    Article  Google Scholar 

  • Camacho-Pérez, B., Rios-Leal, E., Rinderknecht-Seijas, N., & Poggi-Varaldo, H. M. (2012). Enzymes involved in the biodegradation of hexachlorocyclohexane: A mini review. Journal of Environmental Management, 95, S306–S318.

    Article  Google Scholar 

  • Carrillo-Pérez, E., Ruiz-Manríquez, A., & Yeomans-Reina, H. (2004). Isolation, identification and evaluation of a mixed culture of microorganisms capable of degrading DDT (in Spanish). Revista Internacional de Contaminación Ambiental, 20, 69–75.

    Google Scholar 

  • Carvalho, P. N., Rodrigues, P. N. R., Basto, M. C. P., & Vasconcelos, M. T. S. D. (2009). Organochlorine pesticides levels in Portuguese coastal areas. Chemosphere, 75, 595–600.

    Article  Google Scholar 

  • Cuozzo, S. A., Rollan, G. G., Abate, C. M., & Amoroso, M. J. (2009). Specific dechlorinase activity in lindane degradation by Streptomyces sp. M7. World Journal of Microbiology and Biotechnology, 25, 1539–1546.

    Article  Google Scholar 

  • Datta, J., Maiti, A. K., Modak, D. P., Chakrabartty, P. K., Bhattacharyya, P., & Ray, P. K. (2000). Metabolism of γ-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: Identification of metabolites. Journal of General and Applied Microbiology, 46, 59–67.

    Article  Google Scholar 

  • De Paolis, M. R., Lippi, D., Guerriero, E., Polcaro, C. M., & Donati, E. (2013). Biodegradation of α-, β-, and γ-Hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Applied Biochemistry and Biotechnology, 170, 514–524.

    Article  Google Scholar 

  • Elango, V., Kurtz, H. D, Jr., Anderson, C., & Freedman, D. L. (2011). Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture. Journal of Hazardous Materials, 197, 204–210.

    Article  Google Scholar 

  • El-Bestawy, E. A., Abd El-Salam, A. Z., & Abd El-Rahman, H. M. (2007). Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. International Biodeterioration and Biodegradation, 59, 180–192.

    Article  Google Scholar 

  • Elcey, C. D., & Kunhi, A. A. M. (2010). Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. Journal of Agriculture and Food Chemistry, 58, 1046–1054.

    Article  Google Scholar 

  • Endo, R., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2006). Growth inhibition by metabolites of γ-hexachlorocyclohexane in Sphingobium japonicum UT26. Bioscience, Biotechnology, and Biochemistry, 70, 1029–1032.

    Article  Google Scholar 

  • Endo, R., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2007). Identification and characterization of genes encoding a putative ABC-type transporter essential for the utilization of γ-hexachlorocyclohexane in Sphingobium japonicum UT26. Journal of Bacteriology, 189, 3712–3720.

    Article  Google Scholar 

  • Fetzner, S., & Lingens, F. (1994). Bacterial dehalogenases: Biochemistry, genetics and biotechnological applications. Microbiological Reviews, 58, 641–685.

    Google Scholar 

  • Flores, B., Camarena, C., Ren, J., Krishnamurthy, S., & Belzer, W. (2009). Assessment of organochlorine pesticide levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas. Archives of Environmental Contamination and Toxicology, 57, 11–20.

    Article  Google Scholar 

  • Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A., Saez, J. M., & Amoroso, M. J. (2010). Microorganisms capable to degrade organochlorine pesticides. In A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp. 1255–1264). Badajoz: Formatex.

    Google Scholar 

  • Fuentes, M. S., Saez, J. M., Benimeli, C. S., & Amoroso, M. J. (2011). Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water, Air, and Soil Pollution, 222, 217–231.

    Article  Google Scholar 

  • Fuscoletti, V., Achene, L., Gismondi, F., Lamarra, D., Lucentini, L., Spina, S., et al. (2015). Presence of epsilon HCH together with four other HCH isomers in drinking water, groundwater and soil in a former lindane production site. Bulletin of Environment Contamination and Toxicology, 95, 108–115.

    Article  Google Scholar 

  • García-Rivero, M., & Peralta-Pérez, M. R. (2008). Cometabolism in the biodegradation of hydrocarbons. Revista Mexicana de Ingeniería Biomédica, 7, 1–12.

    Google Scholar 

  • Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176, 20–30.

    Article  Google Scholar 

  • Geueke, B., Garg, N., Ghosh, S., Fleischmann, T., Holliger, C., Lal, R., et al. (2013). Metabolomics of hexachlorocyclohexane (HCH) transformation: Ratio of LinA to LinB determines metabolic fate of HCH isomers. Environmental Microbiology, 15, 1040–1049.

    Article  Google Scholar 

  • Girish, K., & Kunhi, A. A. M. (2013). Microbial degradation of gamma-hexachlorocyclohexane (lindane). African Journal of Microbiology Research, 7, 1635–1643.

    Article  Google Scholar 

  • González, M., Miglioranza, K. S. B., Aizpún, J. E., Isla, F. I., & Pena, A. (2010). Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere, 81, 351–358.

    Article  Google Scholar 

  • Guillén-Jiménez, F. M., Cristiani-Urbina, E., Cancino-Díaz, J. C., Flores-Moreno, J. L., & Barragán-Huerta, B. E. (2012). Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: Kinetic study and identification of metabolites. International Biodeterioration and Biodegradation, 74, 36–47.

    Article  Google Scholar 

  • Herrero-Mercado, M., Waliszewski, S. M., Valencia-Quintana, R., Caba, M., Hernández-Chalate, F., García-Aguilar, E., et al. (2010). Organochlorine pesticide levels in adipose tissue of pregnant women in Veracruz, Mexico. Bulletin of Environmental Contamination and Toxicology, 84, 652–656.

    Article  Google Scholar 

  • Hong, S. H., Shim, W. J., Han, G. M., Ha, S. Y., Jang, M., Rani, M., et al. (2013). Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Science of the Total Environment, 1, 1463–1470.

    Google Scholar 

  • Kaur, J., Moskalikova, H., Niharika, N., Sedlackova, M., Hampl, A., Damborsky, J., et al. (2013). Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 63, 673–678.

    Article  Google Scholar 

  • KEGG. (2014). Kyoto encyclopedia of genes and genomes. KEGG Pathway Database.

    Google Scholar 

  • Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., et al. (2002). Cloningand characterization of lin genes responsible for the degradationof hexachlorocyclohexane isomers by Sphingomonaspaucimobilis strain B90. Applied and Environment Microbiology, 68, 6021–6028.

    Article  Google Scholar 

  • Lal, R., Dogra, C., Malhotra, S., Sharma, P., & Pal, R. (2006). Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends in Biotechnology, 24, 121–130.

    Article  Google Scholar 

  • Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., et al. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiology and Molecular Biology Reviews, 74, 58–80.

    Article  Google Scholar 

  • Luzordo, O. P., Mahtani, V., Troyano, J. M., Alvarez de la Rosa, M., Padilla-Perez, A. I., Zumbado, M., et al. (2009). Determinants of organochlorine levels detectable in the amniotic fluid of women from Tenerif Island (Canary Islands, Spain). Environmental Research, 109, 607–613.

    Article  Google Scholar 

  • Mahmood, A., Malik, R. N., Li, J., & Zhang, G. (2014). Levels, distribution pattern and ecological risk assessment of organochlorines pesticides (OCPs) in water and sediments from two tributaries of the Chenab River, Pakistan. Ecotoxicology, 23, 1713–1721.

    Article  Google Scholar 

  • Manickam, N., Mau, M., & Schlomann, M. (2006). Characterization of the novel HCH degrading strain, Microbacterium sp. ITRC1. Applied Microbiology and Biotechnology, 69, 580–588.

    Article  Google Scholar 

  • Manickam, N., Misra, R., & Mayilraj, S. (2007). A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12. Journal of Applied Microbiology, 102, 1468–1478.

    Article  Google Scholar 

  • Manickam, N., Reddy, M. K., Saini, H. S., & Shanker, R. (2008). Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. Journal of Applied Microbiology, 104, 952–960.

    Article  Google Scholar 

  • Miyauchi, K., Lee, H.-S., Fukuda, M., Takagi, M., & Nagata, Y. (2002). Cloning and characterization of linR, involved in regulation of the downstream pathway for γc-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Applied and Environment Microbiology, 68, 1803–1807.

    Article  Google Scholar 

  • Murthy, R. H. M., & Manonmani, H. K. (2007). Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. Journal of Hazardous Materials, 149, 18–25.

    Article  Google Scholar 

  • Nagata, Y., Endo, R., Itro, M., Ohtsubo, Y., & Tsuda, M. (2007). Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Applied Microbiology and Biotechnology, 76, 741–752.

    Article  Google Scholar 

  • Nagata, Y., Futamura, A., Miyauchi, K., & Takagi, M. (1999). Two different types of dehalogenases, LinA and LinB, involved in γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. Journal of Bacteriology, 17, 5409–5413.

    Google Scholar 

  • Nagata, Y., Nariya, T., Ohtomo, R., Fukuda, M., Yano, K., & Takagi, M. (1993). Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis. Journal of Bacteriology, 175, 6403–6410.

    Google Scholar 

  • Nagata, Y., Prokop, Z., Sato, Y., Jerabek, P., Kumar, A., Ohtsubo, Y., et al. (2005). Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Applied and Environment Microbiology, 71, 2183–2185.

    Article  Google Scholar 

  • Nagpal, V., Srinivasan, M. C., & Paknikar, K. M. (2008). Biodegradation of γ-hexachlorocyclohexane (lindane) by a non-white-rot fungus Conidiobolus 03-1-56 isolated from litter. Indian journal of Microbiology, 48, 134–141.

    Article  Google Scholar 

  • Nalin, R., Simonet, P., Vogel, T. M., & Normand, P. (1999). Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. International Journal of Systematic Bacteriology, 49, 19–23.

    Article  Google Scholar 

  • Nitoi, I., Oncescu, T., & Oancea, P. (2013). Mechanism and kinetic study for the degradation of lindane by photo-Fenton process. Journal of Industrial and Engineering Chemistry, 19, 305–309.

    Article  Google Scholar 

  • Okeke, B. C., Siddique, T., Arbestain, M. C., & Frankenberger, W. T. (2002). Biodegradation of γ-hexachlorocyclohexane (lindane) and α-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. Journal of Agriculture and Food Chemistry, 50, 2548–2555.

    Article  Google Scholar 

  • Ondarza, P. M., González, M., Fillmann, G., & Miglioranza, K. S. B. (2014). PBDEs, PCBs and organochlorine pesticides distribution in edible fish from Negro River basin, Argentinean Patagonia. Chemosphere, 94, 135–142.

    Article  Google Scholar 

  • Pesce, S. F., Cazenave, J., Monferrán, M. V., Frede, S., & Wunderlin, D. A. (2008). Integratedsurvey on toxic effects of lindane on neotropical fish: Corydoras paleatus and Jenynsia multidentata. Environmental Pollution, 156, 775–783.

    Article  Google Scholar 

  • Pesce, S. F., & Wunderlin, D. A. (2004). Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. International Biodeterioration and Biodegradation, 54, 255–260.

    Article  Google Scholar 

  • Phillips, T. M., Seech, A. G., Lee, H., & Trevors, J. T. (2005). Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation, 16, 363–392.

    Article  Google Scholar 

  • Pino, N. J., Domínguez, M. C., & Penuela, G. A. (2011). Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 46, 173–180.

    Article  Google Scholar 

  • Polti, M. A., Aparicio, J. D., Benimeli, C. S., & Amoroso, M. J. (2014). Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. International Biodeterioration and Biodegradation, 88, 48–55.

    Article  Google Scholar 

  • Quintero, J. C., Lu-Chau, T. A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2007). Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. International Biodeterioration and Biodegradation, 60, 319–326.

    Article  Google Scholar 

  • Quintero, J. C., Moreira, M. T., Feijoo, G., & Lema, J. M. (2005). Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere, 61, 528–536.

    Article  Google Scholar 

  • Quintero, J. C., Moreira, M. T., Lema, J. M., & Feijoo, G. (2006). An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry. Chemosphere, 63, 1005–1013.

    Article  Google Scholar 

  • Rigas, F., Papadopoulou, K., Philippoussis, A., Papadopoulou, M., & Chatzipavlidis, J. (2009). Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non sterile conditions using multilevel factorial design. Water, Air, and Soil pollution, 197, 121–129.

    Article  Google Scholar 

  • Roche, H., Vollaire, Y., Persic, A., Buet, A., Oliveira-Ribeiro, C., Coulet, E., et al. (2009). Organochlorines in the Vaccarès Lagoon trophic web (Biosphere Reserve of Camargue, France). Environmental Pollution, 157, 2493–2506.

    Article  Google Scholar 

  • Roy, C., Gaillardon, P., & Montfort, F. (2000). The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Management Science, 56, 795–803.

    Article  Google Scholar 

  • Saadati, N., Abdullah, M. P., Zakaria, Z., Rezayi, M., & Hosseinizare, N. (2012). Distribution and fate of HCH isomers and DDT metabolites in a tropical environment—case study Cameron Highlands-Malaysia. Chemistry Central Journal, 6, 130.

    Article  Google Scholar 

  • Saez, J. M., Alvarez, A., Benimeli, C. S., & Amoroso, M. J. (2014). Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. International Biodeterioration and Biodegradation, 93, 63–69.

    Article  Google Scholar 

  • Sagar, V., & Singh, D. P. (2011). Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World Journal of Microbiology and Biotechnology, 27, 1747–1754.

    Article  Google Scholar 

  • Salam, J. A., & Das, N. (2012). Remediation of lindane from environment-an overview. International Journal of Advanced Biological Research, 2, 9–15.

    Google Scholar 

  • Salam, J. A., & Das, N. (2014). Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: Kinetic study, enzyme analysis and biodegradation pathway. World Journal of Microbiology and Biotechnology, 30, 1301–1313.

    Article  Google Scholar 

  • Salam, J. A., Lakshmi, V., Das, D., & Das, N. (2013). Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World Journal of Microbiology and Biotechnology, 29, 475–487.

    Article  Google Scholar 

  • Santoyo Telope, F., (2009) The central role of Burkholderia sp. in the degradation of 2,4-D by a mixed culture immobilized on a fixed bed reactor (in Spanish). Ph.D. thesis, National Polytechnic Institute, National School of Biological Sciences, Mexico.

    Google Scholar 

  • Shaker, E. M., & Elsharkawy, E. E. (2015). Organochlorine and organophosphorus pesticide residues in raw buffalo milk from agro industrial areas in Assiut, Egypt. Environmental Toxicology and Pharmacology, 39, 433–440.

    Article  Google Scholar 

  • Shong, J., Jimenez Diaz, M. R., & Collins, C. H. (2012). Towards synthetic microbialconsortia for bioprocessing. Current Opinion in Biotechnology, 23, 798–802.

    Article  Google Scholar 

  • Tor, A., Aydin, M. E., Aydin, S., Tabakci, M., & Beduk, F. (2013). Removal of lindane from an aqueous solution by using aminopropylsilica gel-immobilized calix[6]arene. Journal of Hazardous Materials, 262, 656–663.

    Article  Google Scholar 

  • Ulčnik, A., Kralj Cigić, I., Zupančič-Kralj, L., Tavzes, Č., & Pohleven, F. (2012). Bioremediation of lindane by wood-decaying fungi. Drvna Industrija, 63, 271–276.

    Article  Google Scholar 

  • Vijgen, J. (2006) The legacy of lindane HCH isomer production: A global overview of residue management, formulation and disposal. International HCH and Pesticide Association. http://www.ihpa.info/library_access.php

  • Vijgen, J., Abhilash, P. C., Li, Y. F., Lal, R., Forter, M., Torres, J., et al. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—A global perspective on the management of lindane and its waste isomers. Environmental Science and Pollution Research, 18, 152–162.

    Article  Google Scholar 

  • Villaamil Lepori, E. C., Bovi Mitre, G., & Nassetta, M. (2013). Situación actual de la contaminación por plaguicidas en Argentina. Revista Internacional de Contaminación Ambiental, 29, 25–43.

    Google Scholar 

  • Vlčková, K., & Hofman, J. (2012). A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. Environmental Pollution, 160, 49–56.

    Article  Google Scholar 

  • Wu, J., Hong, Q., Sun, Y., Hong, Y., Yan, Q., & Li, S. (2007). Analysis of the role of LinA and LinB in biodegradation of δ-hexachlorocyclohexane. Environmental Microbiology, 9, 2331–2340.

    Article  Google Scholar 

  • Zhang, H., Hu, C., Jia, X., Xu, Y., Wu, C., Chen, L., et al. (2012). Characteristics of γ-hexachlorocyclohexane biodegradation by a nitrogen-fixing cyanobacterium, Anabaena azotica. Journal of Applied Phycology, 24, 221–225.

    Article  Google Scholar 

  • Zheng, G., Selvam, A., & Wong, J. W. C. (2011). Rapid degradation of lindane (γ-hexachlorocyclohexane) at low temperature by Sphingobium strains. International Biodeterioration and Biodegradation, 65, 612–618.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaria de Ciencia, Arte e Innovación Tecnológica (SCAIT), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Saez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saez, J.M., Alvarez, A., Fuentes, M.S., Amoroso, M.J., Benimeli, C.S. (2017). An Overview on Microbial Degradation of Lindane. In: Singh, S. (eds) Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45156-5_9

Download citation

Publish with us

Policies and ethics