Skip to main content

Introduction

  • Chapter
  • First Online:
  • 744 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 76))

Abstract

LSNSs include a group of interconnected nodes and have attracted increasing attention from researchers due to its widespread applications in sensor networks, surveillance systems, intelligent transportation management systems, etc. The nodes in LSNSs exchange information through a communication graph, which is a time-varying graph or a time-invariant graph. Based on the communication topology, nodes in LSNSs are coupled, which give rise to a variety of collective complexities in the overall dynamical properties of LSNSs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Meng, Z., Li, Z., Vasilakos, A. V., & Chen, S. (2013). Delay-induced synchronization of identical linear multiagent systems. IEEE Transactions on Cybernetics, 43(2), 476–489.

    Article  Google Scholar 

  2. Wang, X., Li, S., & Shi, P. (2014). Distributed finite-time containment control for double-integrator multiagent systems. IEEE Transactions on Cybernetics, 44(9), 1518–1528.

    Article  Google Scholar 

  3. Song, Q., Liu, F., Cao, J., & Yu, W. (2013). \(M\)-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics. IEEE Transactions on Cybernetics, 43(6), 1688–1697.

    Article  Google Scholar 

  4. Shen, Q., Jiang, B., Shi, P., & Zhao, J. (2014). Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults. IEEE Transactions on Fuzzy Systems, 22(3), 494–504.

    Article  Google Scholar 

  5. Du, H., Li, S., & Shi, P. (2012). Robust consensus algorithm for second-order multi-agent systems with external disturbances. International Journal of Control, 85(12), 1913–1928.

    Article  MathSciNet  MATH  Google Scholar 

  6. Meng, X., & Chen, T. (2013). Event based agreement protocols for multi-agent networks. Automatica, 49(7), 2125–2132.

    Article  MathSciNet  Google Scholar 

  7. Wen, G., Hu, G., Yu, W., Cao, J., & Chen, G. (2013). Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs. Systems & Control Letters, 62(12), 1151–1158.

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, S., Li, T., & Xie, L. (2011). Distributed consensus for multiagent systems with communication delays and limited data rate. SIAM Journal on Control and Optimization, 49(6), 2239–2262.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhu, L., & Chen, Z. (2014). Robust homogenization and consensus of nonlinear multi-agent systems. Systems & Control Letters, 65, 50–55.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, M., Chen, Z., & Zhang, H. (2014). Semi-global consensus of nonlinear second-order multi-agent systems with measurement output feedback. IEEE Transactions on Automatic Control, 59(8), 2222–2227.

    Article  MathSciNet  Google Scholar 

  11. Wu, Y., Wu, Z., & Su, H. (2015). Robust output synchronisation of non-identical linear agents via internal model principle. IET Control Theory & Applications, 9(12), 1755–1765.

    Article  MathSciNet  Google Scholar 

  12. Xu, X., & Yang, Z. (2013). A new bounded potential fundtion for flocking of multi-agents. ICIC Express Letters. Part B, Applications: An International Journal of Research and Surveys, 4(5), 1183–1188.

    Google Scholar 

  13. Ren, W., & Beard, R. (2005). Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5), 655–661.

    Article  MathSciNet  Google Scholar 

  14. Hong, Y., Gao, L., Cheng, D., & Hu, J. (2007). Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 52(5), 943–948.

    Article  MathSciNet  Google Scholar 

  15. Yu, W., Chen, G., Cao, M., & Kurths, J. (2010). Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3), 881–891.

    Article  Google Scholar 

  16. Meng, D., & Moore, K. L. (2014). Studies on resilient control through multiagent consensus networks subject to disturbances. IEEE Transactions on Cybernetics, 44(11), 2050–2064.

    Article  Google Scholar 

  17. Li, S., Feng, G., Luo, X., & Guan, X. Output consensus of heterogeneous linear discrete-time multiagent systems with structural uncertainties. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2015.2388538.

  18. Zhang, H., Feng, T., Yang, G.-H., & Liang, H. Distributed cooperative optimal control for multiagent systems on directed graphs: An inverse optimal approach. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2014.2350511.

  19. Hu, Y., Gao, Y., & An, B. (2015). Multiagent reinforcement learning with unshared value functions. IEEE Transactions on Cybernetics, 45(4), 647–662.

    Article  Google Scholar 

  20. Yu, C., Zhang, M., Ren, F., & Tan, G. Multiagent learning of coordination in loosely coupled multiagent systems. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2014.2387277.

  21. Lin, P., Jia, Y., & Li, L. (2008). Distributed robust \(H_{\infty }\) consensus control in directed networks of agents with time-delay. Systems & Control Letters, 57(8), 643–653.

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z., Duan, Z., & Chen, G. (2011). Dynamic consensus of linear multi-agent systems. IET Control Theory & Applications, 5(1), 19–28.

    Article  MathSciNet  Google Scholar 

  23. Xiong, W., Ho, D. W., & Cao, J. (2012). Impulsive consensus of multi-agent directed networks with nonlinear perturbations. International Journal of Robust and Nonlinear Control, 22(14), 1571–1582.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, J., Hill, D. J., & Liu, T. (2009). Synchronization of complex dynamical networks with switching topology: A switched system point of view. Automatica, 45(11), 2502–2511.

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C., Chen, M., Lam, J., & Mao, X. (2012). On exponential almost sure stability of random jump systems. IEEE Transactions on Automatic Control, 57(12), 3064–3077.

    Article  MathSciNet  Google Scholar 

  26. Lu, J. Q., Ho, D. W., & Cao, J. (2010). A unified synchronization criterion for impulsive dynamical networks. Automatica, 46(7), 1215–1221.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, J. Q., Ho, D. W., Cao, J., & Kurths, J. (2013). Single impulsive controller for globally exponential synchronization of dynamical networks. Nonlinear Analysis: Real World Applications, 14(1), 581–593.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, J. Q., Kurths, J., Cao, J., Mahdavi, N., & Huang, C. (2012). Synchronization control for nonlinear stochastic dynamical networks: Pinning impulsive strategy. IEEE Transactions on Neural Networks and Learning Systems, 23(2), 285–292.

    Article  Google Scholar 

  29. Li, L. L., Ho, D. W. C., & Lu, J. Q. (2013). A unified approach to practical consensus with quantized data and time delay. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(10), 2668–2678.

    Article  MathSciNet  Google Scholar 

  30. Su, H., Rong, Z., Chen, M. Z. Q., Wang, X., Chen, G., & Wang, H. (2013). Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks. IEEE Transactions on Cybernetics, 43(1), 394–399.

    Article  Google Scholar 

  31. Su, H., Zhang, N., Chen, M. Z., Wang, H., & Wang, X. (2013). Adaptive flocking with a virtual leader of multiple agents governed by locally lipschitz nonlinearity. Nonlinear Analysis: Real World Applications, 14(1), 798–806.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, W. A., Feng, G., & Yu, L. (2012). Multi-rate distributed fusion estimation for sensor networks with packet losses. Automatica, 48(9), 2016–2028.

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W. A., Liu, S., & Yu, L. (2014). Fusion estimation for sensor networks with nonuniform estimation rates. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(5), 1485–1498.

    Article  MathSciNet  Google Scholar 

  34. He, W., Qian, F., & Han, Q. (2012). Leader-follower synchronization for complex dynamical networks via sampled-data control. In 2012 31st Chinese, Control Conference (CCC) (pp. 6099–6104). IEEE.

    Google Scholar 

  35. Hu, L., Shi, P., & Frank, P. (2006). Robust sampled-data control for markovian jump linear systems. Automatica, 42, 2025–2030.

    Article  MathSciNet  MATH  Google Scholar 

  36. Nguang, S. K., & Shi, P. (2003). Fuzzy \({H}_\infty \) output feedback control of nonlinear systems under sampled measurements. Automatica, 39, 2169–2174.

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, M., Zhang, S., Fan, Z., & Qiu, M. (2012). \({H}_{\infty }\) state estimation for discrete-time chaotic systems based on a unified model. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42, 1053–1063.

    Google Scholar 

  38. Zhang, W., Branicky, M., & Phillips, S. (2001). Stability of networked control systems. IEEE Control System Magazine, 21, 84–99.

    Article  Google Scholar 

  39. Hu, L., Lam, J., Cao, Y., & Shao, H. (2003). A LMI approach to robust \({H}_2\) sampled-data control for linear uncertain systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33, 149–155.

    Google Scholar 

  40. Fridman, E., Seuret, A., & Richard, J. P. (2004). Robust sampled-data stabilization of linear systems: An input delay approach. Automatica, 40, 1441–1446.

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, B., Wang, Z., & Liu, X. (2011). A stochastic sampled-data approach to distributed \({H}_{\infty }\) filtering in sensor networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 58, 2237–2246.

    Article  MathSciNet  Google Scholar 

  42. Shen, B., Wang, Z., & Liu, X. Sampled-data synchronization control of complex dynamical networks with stochastic sampling. IEEE Transactions on Automatic Control, Accepted.

    Google Scholar 

  43. Fridman, E. (2010). A refined input delay approach to sampled-data control. Automatica, 46(2), 421–427.

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhu, X., Chen, B., Yue, D., & Wang, Y. (2012). An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Transactions on Fuzzy Systems, 20, 330–341.

    Article  Google Scholar 

  45. Scardovi, L., & Sepulchre, R. (2009). Synchronization in networks of identical linear systems. Automatica, 45(11), 2557–2562.

    Article  MathSciNet  MATH  Google Scholar 

  46. Isidori, A., Marconi, L., & Casadei, G. (2014). Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory. IEEE Transactions on Automatic Control, 59(10), 2680–2691.

    Article  MathSciNet  Google Scholar 

  47. Wieland, P., Sepulchre, R., & Allgöwer, F. (2011). An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 47(5), 1068–1074.

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu, W., Chen, G., & Lu, J. (2009). On pinning synchronization of complex dynamical networks. Automatica, 45(2), 429–435.

    Article  MathSciNet  MATH  Google Scholar 

  49. Tang, Y., Gao, H., Kurths, J., & Fang, J.-A. (2012). Evolutionary pinning control and its application in UAV coordination. IEEE Transactions on Industrial Informatics, 8(4), 828–838.

    Article  Google Scholar 

  50. Zhang, X., Liu, L., & Feng, G. (2015). Leader-follower consensus of time-varying nonlinear multi-agent systems. Automatica, 52, 8–14.

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, W., Zhou, W., & Chen, T. (2009). Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(4), 829–839.

    Article  MathSciNet  Google Scholar 

  52. DeLellis, P., & Garofalo, F. (2009). Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica, 45(5), 1312–1318.

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, H., Chen, M. Z., & Stan, G. B. (2011). Fast consensus via predictive pinning control. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9), 2247–2258.

    Article  MathSciNet  Google Scholar 

  54. Li, Z., Duan, Z., & Lin, H. (2008). Disturbance rejection and \(H_\infty \) pinning control of networked multi-agent systems. In Control conference, 2008. CCC 2008. 27th Chinese (pp. 514–518). IEEE.

    Google Scholar 

  55. Liu, Y., & Jia, Y. (2012). \(H_\infty \) consensus control for multi-agent systems with linear coupling dynamics and communication delays. International Journal of Systems Science, 43(1), 50–62.

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu, Y., & Jia, Y. (2010). \(H_\infty \) consensus control of multi-agent systems with switching topology: A dynamic output feedback protocol. International Journal of Control, 83(3), 527–537.

    Article  MathSciNet  MATH  Google Scholar 

  57. He, Y., & Wang, Q. G. (2006). An improved ilmi method for static output feedback control with application to multivariable pid control. IEEE Transactions on Automatic Control, 51(10), 1678–1683.

    Article  MathSciNet  Google Scholar 

  58. Shu, Z., Lam, J., & Xiong, J. (2010). Static output-feedback stabilization of discrete-time markovian jump linear systems: A system augmentation approach. Automatica, 46(4), 687–694.

    Google Scholar 

  59. Feng, Z., Lam, J., & Shu, Z. (2013). Dissipative control for linear systems by static output feedback. International Journal of Systems Science, 44(8), 1566–1576.

    Article  MathSciNet  MATH  Google Scholar 

  60. Wen, G., Hu, G., Yu, W., & Chen, G. (2014). Distributed consensus of higher order multiagent systems with switching topologies. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 359–363.

    Article  Google Scholar 

  61. Wen, G., Yu, W., Chen, M. Z., Yu, X., & Chen, G. (2014). \(H_\infty \) pinning synchronization of directed networks with aperiodic sampled-data communications. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(11), 3245–3255.

    Article  MathSciNet  Google Scholar 

  62. Qin, J., Yu, C., & Gao, H. (2014). Coordination for linear multiagent systems with dynamic interaction topology in the leader-following framework. IEEE Transactions on Industrial Electronics, 61(5), 2412–2422.

    Article  Google Scholar 

  63. Olfati, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.

    Article  MathSciNet  Google Scholar 

  64. Dimarogonas, D. V., & Johansson, K. H. (2010). Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control. Automatica, 46(4), 695–700.

    Article  MathSciNet  MATH  Google Scholar 

  65. Godsil, C., & Royle, G. F. (2013). Algebraic graph theory (Vol. 207). Berlin: Springer.

    MATH  Google Scholar 

  66. Wang, W., Wen, C., Li, Z., & Huang, J. (2013). Hierarchical decomposition based distributed adaptive control for output consensus tracking of uncertain nonlinear systems. In American Control Conference (ACC), 2013 (pp. 4921–4926). IEEE.

    Google Scholar 

  67. Xie, L. (1996). Output feedback \(h_{\infty }\) control of systems with parameter uncertainty. International Journal of Control, 63(4), 741–750.

    Article  MathSciNet  MATH  Google Scholar 

  68. Shu, Z., Lam, J., & Xiong, J. (2009). Non-fragile exponential stability assignment of discrete-time linear systems with missing data in actuators. IEEE Transactions on Automatic Control, 54(3), 625–630.

    Article  MathSciNet  Google Scholar 

  69. Wang, Y., Xie, L., & de Souza, C. E. (1992). Robust control of a class of uncertain nonlinear systems. Systems & Control Letters, 19(2), 139–149.

    Article  MathSciNet  MATH  Google Scholar 

  70. Ma, Q., Lu, J., & Xu, H. (2014). Consensus for nonlinear multi-agent systems with sampled data. Transactions of the Institute of Measurement and Control, 36(5), 618–626.

    Article  Google Scholar 

  71. Lu, J., & Ho, D. W. (2010). Globally exponential synchronization and synchronizability for general dynamical networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(2), 350–361.

    Article  Google Scholar 

  72. Liu, K., & Fridman, E. (2012). Wirtingers inequality and Lyapunov-based sampled-data stabilization. Automatica, 48(1), 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  73. Park, P., Ko, J. W., & Jeong, C. (2011). Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47, 235–238.

    Article  MathSciNet  MATH  Google Scholar 

  74. Isidori, A. (1999). Nonlinear Control Systems (Vol. 2). Great Britain: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, Y., Lu, R., Su, H., Shi, P., Wu, ZG. (2017). Introduction. In: Synchronization Control for Large-Scale Network Systems. Studies in Systems, Decision and Control, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-45150-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45150-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45149-7

  • Online ISBN: 978-3-319-45150-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics