Anticipation and the Brain

  • Mihai NadinEmail author


We are our brains. The study argues for a theory of the brain based on the brain itself, not on theories generated to explain the world in some of its many aspects. Consequently, this study of the brain debunks those analogy assumptions, never confirmed by science, that still dominate brain science. The hypothesis advanced concerns the distributed nature of brain activity. It describes the role of interactions, the specific causality characteristic of brain related dynamics, and the broader questions of cognitive activity associated with awareness of change (usually subsumed as consciousness). Empirical evidence that brain processes are anticipatory in nature leads to the conclusion that reproducibility, as defined within the deterministic experimental method, cannot be expected. Significance for the performance of the living (reproduction, survival, evolutionary edge, etc.) informs brain processes and explains their non-deterministic nature.


Complementarity Decidability G-complexity Interaction Reactive brain Anticipatory brain 



The Russian Academy of Sciences, N.P. Bechtereva Institute of the Human Brain (St. Petersburg, Russia) challenged me to present my understanding of the brain and the role it plays in anticipatory processes. The keynote address at the conference Modern Trends in Human Brain Neuroscience (September 24–26, 2015) offered the opportunity to engage scientists of reputation in a discussion of the ideas presented. I am indebted to Dr. Valentina Ilyukhina and Dr. Elena Nikolaeva for initiating the invitation, and to the antÉ–Institute for Research in Anticipatory Systems for supporting the research. Hanse Wissenschaftskolleg made possible the revision of this manuscript and preparation for publishing. I am grateful to Dr. Matthew Goldberg (UT-Southwestern Medical Center) for suggestions regarding pre-symptomatic diagnostics of Parkinson’s, and to Dr. Michael Devous and the study group on fMRI for helping me clarify the potential and the limits of this technology. Kalevi Kull and Andres Kurismaa provided useful references to the work of F.S. Rothschild. The Deutsche Forschungsgemeinschaft supported some of the research.


  1. 1.
    Kouvaris, K., Clune, J., Kounios, L. Brede, M., Watson, R.A.: How evolution learns to generalise: principles of under-fitting, over-fitting and induction in the evolution of developmental organization (2015). See also
  2. 2.
    Bayes, T.: An Essay Towards Solving a Problem in the Doctrine of Chances, pp. 370–418. Philosophical Society, London (1763)Google Scholar
  3. 3.
    Price, R.: A demonstration of the second rule in the essay towards the solution of a problem in the doctrine of chances, published in the Philosophical Transactions, vol. LIII. Communicated by the Rev. Mr. Richard Price, in a Letter to Mr. John Canton, M. A. F. R. S. Philosophical Transactions of the Royal Society, 54, 296–325Google Scholar
  4. 4.
    Arshavsky, YI.: Gelfand on mathematics and neurophysiology.
  5. 5.
    Rosen, R.: Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life (Complexity in Ecological Systems). Columbia University Press, New York (1991)Google Scholar
  6. 6.
    Nadin, M.: Anticipation: a spooky computation. In: Dubois, D. (ed.) CASYS, International Journal of Computing Anticipatory Systems, Partial Proceedings of CASYS 99, vol. 6, pp. 3–47. CHAOS, Liege (1999)Google Scholar
  7. 7.
    Elsasser, W.: Reflections on the Theory of Organisms. Holism in Biology. Johns Hopkins University Press, Baltimore (1998) (Originally published in 1987 by ORBIS Publishing, Frelighsburg, Quebec)Google Scholar
  8. 8.
    MacCormac, E.R.: A cognitive theory of metaphor. MIT press, Cambridge (1985)Google Scholar
  9. 9.
    Daugman, J.G.: Brain metaphor and brain theory (Chap. 2). In: Bechtel, W., Mandik, P., Mundale, J., Stufflebeam, R. (eds.).Philosophy and the Neurosciences. A Reader. Wiley-Blackwell, Oxford (2001)Google Scholar
  10. 10.
    Bandettini, P.A.: Twenty years of functional MRI: the science and the stories. Neuroimage 62(2), 575–588 (2012)CrossRefGoogle Scholar
  11. 11.
    Broca, P.P.: Localisations des fonctions cérébrales. Siège de la faculté du langage articulé. Bulletin de la Société d’Anthropologie 4, 200–208 (1863). See also
  12. 12.
    Shifferman, E.: More than meets the fMRI: the unethical apotheosis of neuroimages. J. Cognition Neuroethics 3(2), 57–116 (2015)Google Scholar
  13. 13.
    Robson, D.: A brief history of the brain. New Scientist (Feature) 21 September 2011.
  14. 14.
    Molnar, Z.: Thomas Willis (1621–1675), the founder of clinical neuroscience. Rev. Neurosci. 5, 329–335 (2004). See also: Willis, T.: The functional organization of the brain.
  15. 15.
    Galvani, L.: De viribus electricitatis. University of Bologna, Bologna (1791). See also
  16. 16.
    Ramon y Cajal, S.: Histologia del system nervioso del homre y de los vertebrados. Ministerio de Sanidad y Consumo, Madrid (2007). See also
  17. 17.
  18. 18.
    Finger, S.: Mind Behind the BRAIN. A History of the Pioneers and Their Discoveries. Oxford University Press, Cambridge (2000)Google Scholar
  19. 19.
    Barlow, H.: Single units and sensation. A neuron doctrine for perceptual psychology. Perception 1(4), 371–394 (1972)CrossRefGoogle Scholar
  20. 20.
    Poldrack, R.A., Farah, M.J.: Progress and challenges in probing the human brain. Nature 526, 371–379 (2015)Google Scholar
  21. 21.
    Rosen, R.: Fundamentals of measurement and representation of natural systems, pp. xiii, 88–90, 114–120. Elsevier, Amsterdam (1978)Google Scholar
  22. 22.
    Louie, A.H.: More Than Life Itself, pp. 217–221. Ontos Verlag, Frankfurt (2009)Google Scholar
  23. 23.
    Libet, B.: Neural destiny: does the brain have a mind of its own? Sciences 29(2), 32–35 (1989)CrossRefGoogle Scholar
  24. 24.
    von Uexküll, J.: A Foray Into the Worlds of Animals and Humans: with a Theory of Meaning (O’Neil, D.J.: Trans.) University of Minnesota Press, Minneapolis (2010) (Originally appeared as Streifzüge durch die Umwelten von Tieren und Menschen. Verlag Julius Springer, Berlin, 1934)Google Scholar
  25. 25.
    Gödel, K.: Über formal unenscheidbare Sätze der Principa Mathematica und verwandte Systeme. Monatshefte für Mathematik und Physik, 38, 173–198. The first incompleteness theorem originally appeared as Theorem VI. (1931)Google Scholar
  26. 26.
    Nadin, M.: G-complexity, quantum computation and anticipatory processes. Comput. Commun. Collab 2(1), 16–34 (2014)Google Scholar
  27. 27.
    West, M., Target, P., Yasuda, S., Wehman, P.: Return to work after TBi. Brain injury medicine. In: Zasler, N.D., Katz, D.I., Zafonte, R.D. (eds.) Principles and Practice pp. 791–813. Demos Medical Publishing, New York (2007)Google Scholar
  28. 28.
    Poldrack, R.A., Yarkoni, T.: From brain maps to cognitive ontologies: informatics and the search for mental structure. Annu. Rev. Psychol. 67, 587–612 (2016)CrossRefGoogle Scholar
  29. 29.
    Latash, M. (ed.): Progress in motor control. Bernstein’s Traditions in Movement Studies, vol 1. Human Kinetics, Champaign, IL (1998)Google Scholar
  30. 30.
    Veresov, N.: Guest editor’s introduction Nikolai Bernstein: the physiology of activeness and the physiology of action. J. Russ. East Eur. Psychol. 44(2), 3–11 (2006)Google Scholar
  31. 31.
    Bernstein, N.A.: Ocherki po fiziologii dvizheniy i fiziologii aktivnosti [Oчepки пo физиoлoгии движeний и физиoлoгии aктивнocти] (In English: Outline of the Physiology of Movements and the Physiology of Activity). Medizina, Moscow (1966)Google Scholar
  32. 32.
    Nowak, D.: Different modes of grip force control: voluntary and externally guided arm movements with a hand-held load. Clin. Neurophysiol. 115(4), 839–848 (2004)CrossRefGoogle Scholar
  33. 33.
    Nadin, M.: Mind—anticipation and Chaos. Belser Verlag, Stuttgart (1991)Google Scholar
  34. 34.
    Nadin, M.: Antecapere ergo sum: what price knowledge? AI in life and society 25th anniversary volume: a faustian exchange: what is “to be human” in the era of ubiquitous computing? pp. 39–50. Springer, London (2013)Google Scholar
  35. 35.
    Nadin, M.: Quantifying anticipatory characteristics. The AnticipationScope and the anticipatory profile. In: Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technologies and Decision Support Systems, Studies in Computational Intelligence, vol. 486, pp. 143–160. Springer, New York (2013)Google Scholar
  36. 36.
    Constantinople, C.M., Bruno, R.M.: Deep cortical layers are activated directly by thalamus. Science 340(6140), 1591–1594 (2013)CrossRefGoogle Scholar
  37. 37.
    Nadin, M.: Variability by another name: “repetition without repetition.” In: Nadin, M. (ed.) Learning from the Past. Early Soviet/Russian Contributions to a Science of Anticipation. Cognitive Science Monographs, vol. 25, pp. 329–340. Springer, Cham (2015)Google Scholar
  38. 38.
    Meijer, O.G., Bongaardt, R.: Bernstein’s last paper: the immediate tasks of neurophysiology in the light of the modern theory of biological activity. Motor Control 2(1), 3–9 (1998)Google Scholar
  39. 39.
    Nadin, M.: Semiotics is fundamental science. In: Jennex, M.E. (ed.) Knowledge Discovery, Transfer, and Management in the Information Age, pp. 76–125. IGI Global, Hershey (2014)CrossRefGoogle Scholar
  40. 40.
    Novoplansky, A.: Future perception in plants. In: Nadin, M. (ed.) Anticipation across disciplines, pp. 57–70. Springer, Cham (2016)CrossRefGoogle Scholar
  41. 41.
    Boisseau, R.P., Vogel, D., Dussutour, A.: Habituation in non-neural organisms: evidence from slime moulds. Proc. R. Soc. B: Biol. Sci. 283(1829) (2016). See also doi: 10.5061/dryad.51j89
  42. 42.
    Gelfand, I.M., Tsetlin, M.L.: Mathematical modeling of mechanisms of the central nervous system. Models of the Structural-Functional Organization of Certain Biological Systems (Gelfand, I.M. (ed.), Beard, C.R., Trans.). Cambridge, MIT Press (1971)Google Scholar
  43. 43.
    Nadin, M.: Anticipatory and predictive computation. In: Laplante, P. (ed.) Encyclopedia of Computer Science and Technology. Taylor & Francis, London (2016)Google Scholar
  44. 44.
    Bem, D.J.: Feeling the future: experimental evidence for anomalous retroactive influences on cognition and affect. J. Pers. Soc. Psychol. 100(3), 407–425 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conductive and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)Google Scholar
  46. 46.
    Hawkins, J., Blackeslee, S.: On Intelligence. St. Martin’s Griffin, New York (2005)Google Scholar
  47. 47.
    Ilyenkov, E.V.: The ideal in human activity. Dialectical Logic, Essays on its History and Theory (Creighton, C., Trans.) Erythros Press and Media, Kettering OH (1977)Google Scholar
  48. 48.
    Penn, Y., Segal, M., Moses, E.: Network synchronization in hippocampal neurons. Proc. Nat. Acad. Sci. 113(12), 3341–3346 (2016)Google Scholar
  49. 49.
    Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., Deadwyler, S.A.: A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng. 8(4) (2011).
  50. 50.
    Barron, A.B., Klein, C.: What insects can tell us about the origins of consciousness. Proc. Natl. Acad. Sci. 113(18), 4900–4908 (2016)CrossRefGoogle Scholar
  51. 51.
    Chou, M-Y., et al.: Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352(6281), 87–90 (2016)Google Scholar
  52. 52.
    Schrödinger, E.: What Is Life?. Cambridge University Press, Oxford (1944)Google Scholar
  53. 53.
    Varela, F., Maturana, H.R.: Autopoiesis and Cognition: The Realization of the Living. Reidel Publishing, Dordrecht (1980)Google Scholar
  54. 54.
    Monod, J.: Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. Knopf, New York (1971)Google Scholar
  55. 55.
    Cannon, W.B.: Organization for physiological homeostasis. Physiol. Rev. 9(3), 399–431 (1929)Google Scholar
  56. 56.
    Schulkin, J.: Allostasis: a neural behavioral perspective. Horm. Behav 43, 21–27 (2003)CrossRefGoogle Scholar
  57. 57.
    Schulkin, J.: Social allostasis: anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, January 31 (2011).
  58. 58.
    Moore-Ede M.C.: Physiology of the circadian timing system: predictive versus reactive homeostasis. Am. J. Physiol. 250(5) (pt. 2), 737–756 (1986)Google Scholar
  59. 59.
    Bauman, D.E.: Regulation of nutrient partitioning during lactation: homeostasis and homeorhesis revisited. In: Cronje, P.J. (ed.) Ruminant Physiology, pp. 311–328. CAB Publishing, NY (2000)Google Scholar
  60. 60.
    Bernstein, N.A.: Atlas des Ganges und Laufes des Menschen. Deutsche Gesellschaft für die Geschichte der Sportwissenschaft, Dortmund (1929). See also
  61. 61.
    Godfrey-Smith, P., Matthew, L.: Long term-high density occupation of a site by Octopus tetricus and possible site modification due to foraging behavior. Mar. Freshw. Behav. Physiol 45(4), 261–268 (2012)CrossRefGoogle Scholar
  62. 62.
    Montgomery, S.: The Soul of an Octopus. Atria Books, New York (2015)Google Scholar
  63. 63.
    Project Seneludens:
  64. 64.
  65. 65.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.antÉ—Institute for Research in Anticipatory SystemsUniversity of Texas at DallasRichardsonUSA

Personalised recommendations