Skip to main content

Influence of the Cerebellum in Anticipation and Mental Disorders

  • Chapter
  • First Online:
Book cover Anticipation and Medicine

Abstract

The cerebellum is involved in motor coordination and motor learning. Cerebellar plasticity can serve as a cellular basis of learning. Data obtained from humans and animals led to the supposition that this structure could be a comparator and play a crucial role in sensory anticipation and online sensorimotor control. Internal models aid in executing motion precisely and harmoniously with or without external sensory feedback. The analogy between control of body part motion and manipulation of mental representation suggests the cerebellum’s possible involvement in non-motor mental functions. Moreover cerebellar-lesioned or mutant animals exhibit cognitive and emotional disturbances, especially high reactivity to environmental changes, behavioral disinhibition, and stereotyped behavior. All these results and theoretical approaches support the idea that the cerebellum and its role in anticipation could represent an interesting field of investigation in the pathophysiology and the treatment of neuropsychiatric disorders such as autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Brisson, J., Sorin, A-L.: Anticipation and Child Development. In: Nadin, M.: (ed.) Anticipation and Medicine, pp. 188–199. Springer, Cham (2016).

References

  1. Martin, G.B., Butz, G.B., Sigaud, O., Pezzulo, G.: Anticipations, brains, individual and social behavior: an introduction to anticipatory systems. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.) Anticipatory Behavior in Adaptive Learning Systems, pp. 1–18. Springer, Berlin (2007)

    Google Scholar 

  2. Fleischer, J.G.: Neural correlates of anticipation in Cerebellum, Basal Ganglia, and hippocampus. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.) Anticipatory behavior in adaptive learning systems, vol. 4520, pp. 19–34. Springer, Berlin (2007)

    Chapter  Google Scholar 

  3. Nadin, M.: Can predictive computation reach the level of anticipatory computing? Int. J. Appl. Res. Inf. Technol. Comput. 5(3), 171–200 (2014)

    Article  Google Scholar 

  4. Doya, K.: Complementary roles of basal ganglia and cerebellum in learning and motor control Kenji Doya. Curr. Opin. Neurobiol. 10, 732–739 (2000)

    Article  Google Scholar 

  5. Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Pütz, B., Yoshioka, T., Kawato, M.: Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403(6766), 192–195 (2000)

    Article  Google Scholar 

  6. Bastian, A.J.: Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16(6), 645–649 (2006)

    Article  Google Scholar 

  7. Serrien, D.J., Wiesendanger, M.: Role of the cerebellum in tuning anticipatory and reactive grip force responses. J. Cogn. Neurosci. 11(6), 672–681 (1999)

    Article  Google Scholar 

  8. Thomas, A.: Le cervelet – Etude anatomique, clinique et physiologique. Steinheil, Paris (1897)

    Google Scholar 

  9. Binet, A., Thomas, A., Henri, V.: Le cervelet. Revue 4, 438–439 (1897)

    Google Scholar 

  10. Flourens, M. J. P.: Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Paris (1824)

    Google Scholar 

  11. Glickstein, M., Strata, P., Voogd, J.: Cerebellum: history. Neuroscience 162(3), 549–559 (2009)

    Article  Google Scholar 

  12. Schmahmann, J.D., Caplan, D.: Cognition, emotion and the cerebellum. Brain 129(pt. 2), 290–292 (2006)

    Google Scholar 

  13. Bürk, K.: Cognition in hereditary ataxia. Cerebellum 6(3), 280–286 (2007)

    Article  Google Scholar 

  14. Cooper, F.E., Grube, M., Elsegood, K.J., Welch, J.L., Kelly, T.P., Chinnery, P.F., Griffiths, T.D.: The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behav. Neurol. 23(1–2), 3–15 (2010)

    Article  Google Scholar 

  15. Bürk, K., Globas, C., Bösch, S., Klockgether, T., Zühlke, C., Daum, I., Dichgans, J.: Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J. Neurol. 250(2), 207–211 (2003)

    Article  Google Scholar 

  16. Valis, M., Masopust, J., Bažant, J., Ríhová, Z., Kalnická, D., Urban, A., Zumrová, A., Hort, J.: Cognitive changes in spinocerebellar ataxia type 2. Neuro Endocrinol. Lett. 32(3), 354–359 (2011)

    Google Scholar 

  17. Lilja, A., Hämäläinen, P., Kaitaranta, E., Rinne, R.: Cognitive impairment in spinocerebellar ataxia type 8. J. Neurol. Sci. 237(1–2), 31–38 (2005)

    Article  Google Scholar 

  18. Suenaga, M., Kawai, Y., Watanabe, H., Atsuta, N., Ito, M., Tanaka, F., Katsuno, M., Fukatsu, H., Naganawa, S., Sobue, G.: Cognitive impairment in spinocerebellar ataxia type 6. J. Neurol. Neurosurg. Psychiatry 79(5), 496–499 (2008)

    Article  Google Scholar 

  19. Garrard, P., Martin, N.H., Giunti, P., Cipolotti, L.: Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J. Neurol. 255(3), 398–405 (2008)

    Article  Google Scholar 

  20. Baillieux, H., De Smet, H.J., Dobbeleir, A., Paquier, P.F., De Deyn, P.P., Mariën, P.: Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex 46(7), 869–879 (2009)

    Article  Google Scholar 

  21. Stoodley, C.J., Schmahmann, J.D.: The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 110(3), 149–153 (2009)

    Article  Google Scholar 

  22. Zuchowski, M.L., Timmann, D., Gerwig, M.: Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul. 7(4), 525–531 (2014)

    Article  Google Scholar 

  23. Hoppenbrouwers, S.S., Schutter, D.J.L.G., Fitzgerald, P.B., Chen, R., Daskalakis, Z.J.: The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res. Rev. 59(1), 185–200 (2008)

    Article  Google Scholar 

  24. Mohapatra, P.K., Misra, B.N., Patanaik, P., Sahoo, S.: Major depressive disorder—a co-morbid condition in a case of spino-cerebellar ataxia with writer’s cramp. Indian J. Psychiatry 45(4), 257 (2003)

    Google Scholar 

  25. Reyes, M., Gordon, A.: Cerebellar vermis in schizophrenia. Lancet 318(8248), 700–701 (1981)

    Article  Google Scholar 

  26. Perlov, E., Tebarzt van Elst, L., Buechert, M., Maier, S., Matthies, S., Ebert, D., Hesslinger, B., Philipsen, A.: H1-MR-spectroscopy of cerebellum in adult attention deficit/hyperactivity disorder. J. Psychiatr. Res. 44(14), 938–943 (2010)

    Google Scholar 

  27. Pujol, J., Soriano-Mas, C., Alonso, P., Cardoner, N., Menchón, J.M., Deus, J., Vallejo, J.: Mapping structural brain alterations in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 720–730 (2004)

    Article  Google Scholar 

  28. Sun, Y., Lee, J., Kirby, R.: Brain imaging findings in dyslexia. Pediatr. Neonatol. 51(2), 89–96 (2010)

    Article  Google Scholar 

  29. Laycock, S.K., Wilkinson, I.D., Wallis, L.I., Darwent, G., Wonders, S.H., Fawcett, A.J., Griffiths, P.D., Nicolson, R.I.: Cerebellar volume and cerebellar metabolic characteristics in adults with dyslexia. Ann. N. Y. Acad. Sci. 236, 222–236 (2008)

    Article  Google Scholar 

  30. Allen, G.: Cerebellar contributions to autism spectrum disorders. Clin. Neurosci. Res. 6(3–4), 195–207 (2006)

    Article  Google Scholar 

  31. Schmahmann, J. D., Sherman, J. C.: The cerebellar cognitive affective syndrome. Brain 561–579 (1998)

    Google Scholar 

  32. Schmahmann, J.D.: Disorders of the cerebellum. J. Neuropsychiatr. 16(3), 367–378 (2004)

    Article  Google Scholar 

  33. Schmahmann, J.D.: Cognition, emotion and the cerebellum. Brain 129(pt. 2), 190–192 (2006)

    Google Scholar 

  34. Topka, H., Massaquoi, S.G., Benda, N., Hallett, M.: Motor skill learning in patients with cerebellar degeneration. J. Neurol. Sci. 158, 164–172 (1998)

    Article  Google Scholar 

  35. Lorivel, P. H. T.: Animal models of cognitive and emotional functions of the cerebellum. In: Pombano, L. J., Evans, D. M. (eds.) Cerebellum anatomy, functions and disorders, pp. 31–58. Nova Publishers (2012)

    Google Scholar 

  36. Markvartová, V., Cendelín, J., Vozeh, F.: Changes of motor abilities during ontogenetic development in Lurcher mutant mice. Neuroscience 168(3), 646–651 (2010)

    Article  Google Scholar 

  37. Le Marec, N., Caston, J., Lalonde, R.: Impaired motor skills on static and mobile beams in lurcher mutant mice. Exp. Brain Res. 116(1), 131–138 (1997)

    Article  Google Scholar 

  38. Thifault, S., Girouard, N., Lalonde, R.: Climbing sensorimotor skills in Lurcher mutant mice. Brain Res. Bull. 41(6), 385–390 (1996)

    Article  Google Scholar 

  39. Porras-García, M.E., Ruiz, R., Pérez-Villegas, E.M., Armengol, J.Á.: Motor learning of mice lacking cerebellar Purkinje cells. Front. Neuroanat. 7, 1–8 (2013)

    Article  Google Scholar 

  40. Hilber, P., Caston, J.: Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102(3), 615–623 (2001)

    Article  Google Scholar 

  41. Lorivel, T., Hilber, P.: Motor effects of delta 9 THC in cerebellar Lurcher mutant mice. Behav. Brain Res. 181(2), 248–253 (2007)

    Article  Google Scholar 

  42. Lorivel, T., Hilber, P.: Effects of chlordiazepoxide on the emotional reactivity and motor capacities in the cerebellar Lurcher mutant mice. Behav. Brain Res. 173(1), 122–128 (2006)

    Article  Google Scholar 

  43. Cendelín, J., Korelusová, I., Vozeh, F.: The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav. Brain Res. 189(1), 65–74 (2008)

    Article  Google Scholar 

  44. Hilber, P., Lalonde, R., Caston, J.: An unsteady platform test for measuring static equilibrium in mice. J. Neurosci. Methods 88(2), 201–205 (1999)

    Article  Google Scholar 

  45. Holschneider, D.P., Yang, J., Guo, Y., Maarek, J.I.: Reorganization of functional brain maps after exercise training: Importance of cerebellar—thalamic—cortical pathway. Brain Res. 1184, 96–107 (2007)

    Article  Google Scholar 

  46. Doyon, J., Benali, H.: Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15(2), 161–167 (2005)

    Article  Google Scholar 

  47. Ito, M.: Bases and implications of learning in the cerebellum–adaptive control and internal model mechanism. Prog. Brain Res. 148, 95–109 (2005)

    Article  Google Scholar 

  48. Albus, J.S.: A model of computation and representation in the brain. Inf. Sci. (Ny) 180(9), 1519–1554 (2010)

    Article  Google Scholar 

  49. Doyon, J., Penhune, V., Ungerleider, L.G.: Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3), 252–262 (2003)

    Article  Google Scholar 

  50. Ito, M.: Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9(4), 304–313 (2008)

    Article  Google Scholar 

  51. Ivry, R.: Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum. Brain Mapp. 9(3), 115–118 (2000)

    Article  Google Scholar 

  52. Nixon, P.D., Passingham, R.E.: Predicting sensory events the role of the cerebellum in motor learning. Exp. Brain Res. 138, 251–257 (2001)

    Article  Google Scholar 

  53. Ito, M.: Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78(3–5), 272–303 (2006)

    Article  Google Scholar 

  54. Ohyama, T., Nores, W.L., Murphy, M., Mauk, M.D.: What the cerebellum computes. Trends Neurosci. 26(4), 222–227 (2003)

    Article  Google Scholar 

  55. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends Cogn. Sci. 2(9), 338–347 (1998)

    Article  Google Scholar 

  56. Miall, R.C., Weir, D.J., Wolpert, D.M., Stein, J.F.: Is the cerebellum a smith predictor? J. Mot. Behav. 25(3), 203–216 (1993)

    Article  Google Scholar 

  57. Tuma, J., Kolinko, Y., Vozeh, F., Cendelin, J.: Mutation-related differences in exploratory, spatial, and depressive-like behavior in PCD and Lurcher cerebellar mutant mice. Front. Behav. Neurosci. 9(116), 1–19 (2015)

    Google Scholar 

  58. Hilber, J.C.P., Jouen, F., Delhaye-Bouchaud, N., Mariani, J.: Differential roles of the cerebellar cortex and deep cerebellar nuclei in learning and retention of a spatial task: Studies in intact and cerebellectomized Lurcher mutant mice. Behav. Genet. 28(4), 299–308 (1998)

    Article  Google Scholar 

  59. Gasbarri, A., Pompili, A., Pacitti, C., Cicirata, F.: Comparative effects of lesions of the ponto-cerebellar and olivo-cerebellar pathways on motor and spatial learning in the rat. Neuroscience 116, 1131–1140 (2003)

    Article  Google Scholar 

  60. Meignin, C., Hilber, P., Caston, J.: Influence of stimulation of the olivocerebellar pathway by harmaline on spatial learning in the rat. Brain Res. 824(2), 277–283 (1999)

    Article  Google Scholar 

  61. Garthe, A., Kempermann, G.: An old test for new neurons: refining the morris water maze to study the functional relevance of adult hippocampal neurogenesis. Front. Neurosci. 7, 1–11 (2013)

    Article  Google Scholar 

  62. D’Hooge, R., De Deyn, P.P.: Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36(1), 60–90 (2001)

    Article  Google Scholar 

  63. Mandolesi, L., Giuseppa, M., Spirito, F., Federico, F., Petrosini, L.: Is the cerebellum involved in the visuo-locomotor associative learning? Behav. Brain Res. 184, 47–56 (2007)

    Google Scholar 

  64. Petrosini, L., Leggio, M. G., Molinari, M.: The cerebellum in the spatial problem solving: a co-star or a guest star? Prog. Neurobiol. 56(98), 191–210 (1998)

    Google Scholar 

  65. Lalonde, R., Lamarre, Y., Smith, A.M.: Does the mutant mouse lurcher have deficits in spatially oriented behaviours? Brain Res. 455(1), 24–30 (1988)

    Article  Google Scholar 

  66. Passot, J.B., Sheynikhovich, D., Duvelle, É., Arleo, A.: Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory. PLoS One 7(4), e32560 (2012)

    Article  Google Scholar 

  67. Gross, H., Heinze, A., Seiler, T., Stephan, V.: Generative character of perception: a neural architecture for sensorimotor anticipation. Neural Netw. 12, 1101–1129 (1999)

    Article  Google Scholar 

  68. Hilber, P., Lorivel, T., Delarue, C., Caston, J.: Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 1003(1–2), 108–112 (2004)

    Article  Google Scholar 

  69. Lorivel, T., Roy, V., Hilber, P.: Fear-related behaviors in Lurcher mutant mice exposed to a predator. Genes. Brain. Behav. 13(8), 794–801 (2014)

    Article  Google Scholar 

  70. Zhu, L., Scelfo, B., Tempia, F., Sacchetti, B., Strata, P.: Membrane excitability and fear conditioning in cerebellar Purkinje cell. Neuroscience 140(3), 801–810 (2006)

    Article  Google Scholar 

  71. Sacchetti, B., Scelfo, B., Tempia, F., Strata, P.: Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42(6), 973–982 (2004)

    Article  Google Scholar 

  72. Sacchetti, B., Scelfo, B., Strata, P.: Cerebellum and emotional behavior. NSC 162(3), 756–762 (2009)

    Google Scholar 

  73. Parvizi, J., Anderson, S.W., Martin, C.O., Damasio, H., Damasio, A.R.: Pathological laughter and crying: a link to the cerebellum. Brain 124(pt. 9), 1708–1709 (2001)

    Article  Google Scholar 

  74. Tillfors, M., Furmark, T., Marteinsdottir, I., Fredrikson, M.: Cerebral blood flow during anticipation of public speaking in social phobia: a PET study. Biol. Psychiatry 52(11), 1113–1119 (2002)

    Article  Google Scholar 

  75. Smith, K.A., Ploghaus, A., Cowen, P.J., Mccleery, J.M., Guy, M., Smith, S., Tracey, I., Matthews, P.M.: Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression: Functional magnetic resonance imaging study. Br. J. Psychiatry 181, 411–415 (2002)

    Article  Google Scholar 

  76. Moulton, E.A., Elman, I., Pendse, G., Schmahmann, J., Becerra, L., Borsook, D.: Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J. Neurosci. 31(10), 3795–3804 (2011)

    Article  Google Scholar 

  77. Durisko, C., Fiez, J.A.: Functional activation in the cerebellum during working memory and simple speech tasks. Cortex 46(7), 896–906 (2010)

    Article  Google Scholar 

  78. Balsters, J.H., Ramnani, N.: Symbolic representations of action in the human cerebellum. Neuroimage 43(2), 388–398 (2008)

    Article  Google Scholar 

  79. Balser, N., Lorey, B., Pilgramm, S., Naumann, T., Kindermann, S., Stark, R., Zentgraf, K., Williams, A.M., Munzert, J.: The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Front. Hum. Neurosci. 8, 568 (2014)

    Article  Google Scholar 

  80. Lee, T.M.C., Liu, H., Hung, K.N., Pu, J., Ng, Y., Mak, A.K.Y., Gao, J., Chan, C.C.H.: The cerebellum’s involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia 43, 1870–1877 (2005)

    Article  Google Scholar 

  81. Beaton, A., Mariën, P.: Language, cognition and the cerebellum: grappling with an enigma. Cortex 46(7), 811–820 (2010)

    Article  Google Scholar 

  82. Schweizer, T.A., Alexander, M.P., Cusimano, M., Stuss, D.T.: Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia 45, 3068–3074 (2007)

    Article  Google Scholar 

  83. Kim, Y.T., Seo, J.H., Song, H.J., Yoo, D.S., Lee, H.J., Lee, J., Lee, G., Kwon, E., Kim, J.G., Chang, Y.: Neural correlates related to action observation in expert archers. Behav. Brain Res. 223(2), 342–347 (2011)

    Article  Google Scholar 

  84. Becker, E.B.E., Stoodley, C.J.: Autism spectrum disorder and the cerebellum. Int. Rev. Neurobiol. 113, 1–34 (2013)

    Article  Google Scholar 

  85. Gliga, T., Jones, E.J.H., Bedford, R., Charman, T., Johnson, M.H.: From early markers to neuro-developmental mechanisms of autism. Dev. Rev. 34(3), 189–207 (2014)

    Article  Google Scholar 

  86. Goines, P., Haapanen, L., Boyce, R., Duncanson, P., Braunschweig, D., Delwiche, L., Hansen, R., Hertz-Picciotto, I., Ashwood, P., Van de Water, J.: Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav. Immun. 25(3), 514–523 (2011)

    Article  Google Scholar 

  87. Kern, J.K.: Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 25(6), 377–382 (2003)

    Article  Google Scholar 

  88. Schroeder, J.H., Desrocher, M., Bebko, J.M., Cappadocia, M.C.: Research in Autism Spectrum Disorders The neurobiology of autism: theoretical applications. Res. Autism Spectr. Disord. 4(4), 555–564 (2010)

    Article  Google Scholar 

  89. Allen, G.: The cerebellum in autism. Clin. Neuropsychiatry 2(6), 321–337 (2005)

    Google Scholar 

  90. Larson, J.C.G., Bastian, A.J., Donchin, O., Shadmehr, R., Mostofsky, S.H.: Acquisition of internal models of motor tasks in children with autism. Brain 131(pt. 11), 2894–2903 (2008)

    Article  Google Scholar 

  91. Stoit, A.M.B., van Schie, H.T., Riem, M., Meulenbroek, R.G.J., Newman-Norlund, R.D., Slaats-Willemse, D.I.E., Bekkering, H., Buitelaar, J.K.: Internal model deficits impair joint action in children and adolescents with autism spectrum disorders. Res. Autism Spectr. Disord. 5(4), 1526–1537 (2011)

    Article  Google Scholar 

  92. Haswell, C.C., Izawa, J., Dowell, L.R., Mostofsky, S.H., Shadmehr, R.: Representation of internal models of action in the autistic brain. Nat. Neurosci. 12(8), 970–972 (2009)

    Article  Google Scholar 

  93. Martin, L.A., Goldowitz, D., Mittleman, G.: Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur. J. Neurosci. 31(3), 544–555 (2010)

    Article  Google Scholar 

  94. Nadin. M.: Anticipation and the Brain. In: Nadin, M. (ed.): Anticipation and Medicine, pp. 135–162. Springer, Cham, CH. (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Hilber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hilber, P. (2017). Influence of the Cerebellum in Anticipation and Mental Disorders. In: Nadin, M. (eds) Anticipation and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-45142-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45142-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45140-4

  • Online ISBN: 978-3-319-45142-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics