Advertisement

Smart Watches for Physiological Monitoring: A Case Study on Blood Pressure Measurement

  • Viswam Nathan
  • Simi Susan Thomas
  • Roozbeh JafariEmail author
Chapter
  • 589 Downloads

Abstract

Given the close coupling between wearable devices and the human body, a natural application for these devices is to inform the user of their physiological status. An important point is the potential for wearables to empower the user to monitor his/her own health rather than rely solely on medical professionals or sophisticated medical equipment. This makes it more convenient for the user to monitor certain vital signs more often and this continuous monitoring can prove crucial in diagnosing certain conditions. Pervasive monitoring allows for collection of a large amount of data, which in turn can allow treatments in medicine that are anticipatory rather than reactionary. We emphasize the importance of the design of convenient, wearable physiological sensors by looking in-depth at one specific wearable device called BioWatch, which can be used to non-invasively and continuously measure blood pressure from the wrist.

Keywords

Anticipatory Wearable sensors Non-invasive blood pressure measurement Pulse transit time 

References

  1. 1.
    Nadin, M.: Medicine: the decisive test of anticipation. In: Nadin, M. (ed.) Anticipation and Medicine, pp. 1–25. Springer, Cham (2016)Google Scholar
  2. 2.
    Murphy, S.L., Xu, J., Kochanek, K.D.: Deaths: final data for 2010. Nat. Vital Statist. Rep. 61(4), 1–118 (2013)Google Scholar
  3. 3.
    Poon, C., Zhang, Y.: Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time> In: 27th Annual International Conference of the, IEEE-EMBS Engineering in Medicine and Biology Society. , pp. 5877–5880, Wiley-IEEE Press, Hoboken (2006)Google Scholar
  4. 4.
    Ciaccio, E.J., Drzewiecki, G.M.: Tonometric arterial pulse sensor with noise cancellation. IEEE Trans. Biomed. Eng. 55(10), 2388–2396 (2008). (Wiley-IEEE Press, Hoboken)CrossRefGoogle Scholar
  5. 5.
    Park, M., Kang, H. J., Huh, Y., Kim, K-C.: Cuffless and noninvasive measurement of systolic blood pressure, diastolic blood pressure, mean arterial pressure and pulse pressure using radial artery tonometry pressure sensor with concept of korean traditional medicine. In: 29th Annual International Conference of the IEEE-EMBS 2007 Engineering in Medicine and Biology Society, pp. 3597–3600. Wiley-IEEE Press, Hoboken (2007)Google Scholar
  6. 6.
    Hennig, A., Patzak, A.: Continuous blood pressure measurement using pulse transit time. Somnologie-Schlafforschung und Schlafmedizin 17(22), 104–110 (2013)CrossRefGoogle Scholar
  7. 7.
    Cattivelli, F. S., Garudadri, H.: Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration. In: Sixth International Workshop on Body Sensor Networks Wearable and Implantable Body Sensor Networks, pp. 114–119 Wiley-IEEE Press, Hoboken (2009)Google Scholar
  8. 8.
    Ahlstrom, C., Johansson, A., Uhlin, F., Länne, T., Ask, P.: Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients”. J. Artif. Organs 8(3), 192–197 (2005)CrossRefGoogle Scholar
  9. 9.
    Chandrasekaran, V., Dantu, R., Jonnada, S., Thiyagaraja, S., Subbu, K.: Cuffless differential blood pressure estimation using smart phones. IEEE Trans. Biomed. Eng. 60, 1080–1089 (2013). (Wiley-IEEE Press, Hoboken)CrossRefGoogle Scholar
  10. 10.
    Fung, P., Dumont, G., Ries, C., Mott, C., Ansermino, M.: Continuous noninvasive blood pressure measurement by pulse transit time. In: 26th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society. IEMBS ’04, vol. 1, pp. 738–741. Wiley-IEEE Press, Hoboken (2004)Google Scholar
  11. 11.
    Li, Y., Wang, Z., Zhang, L., Yang, X., Song, J.: Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time Australas. Phys. Eng. Sci. Med. 37, 367–376 (2014)CrossRefGoogle Scholar
  12. 12.
    Lass, J., Meigas, K., Karai, D., Kattai, R., Kaik, J., Rossmann, M.: Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEMBS’04, vol. 1, pp. 2239–2242, Wiley-IEEE Press, Hoboken (2004)Google Scholar
  13. 13.
    Ma, T., Zhang, Y.: A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. In: 27th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society, pp. 996–999. Wiley-IEEE Press, Hoboken (2005)Google Scholar
  14. 14.
    Zheng, Y., Yan, B. P., Zhang, Y., Yu, C., Poon, C. C.: Wearable cuff-less ptt-based system for overnight blood pressure monitoring. In: 35th Annual International Conference of the IEEE- EMBC Engineering in Medicine and Biology Society (EMBC) pp. 6103–6106. Wiley-IEEE Press, Hoboken (2013)Google Scholar
  15. 15.
    Kim, Y., Lee, J.: Cuffless and non-invasive estimation of a continuous blood pressure based on ptt. In: 2nd International Conference on ITCS Information Technology Convergence and Services (ITCS), pp. 1–4, Wiley-IEEE Press, Hoboken (2010)Google Scholar
  16. 16.
    Furedy, J.J., Szabo, A., Péronnet, F.: Effects of psychological and physiological challenges on heart rate, t-wave amplitude, and pulse-transit time. Int. J. Psychophysiol. 22(3), 173–183 (1996)CrossRefGoogle Scholar
  17. 17.
    Gellman, M., Spitzer, S., Ironson, G., Llabre, M., Saab, P., Pasin, R.D., Weidler, D.J., Schneiderman, N.: Posture, place, and mood effects on ambulatory blood pressure. Psychophysiology 27(55), 544–551 (1990)CrossRefGoogle Scholar
  18. 18.
    Caird, F., Andrews, G., Kennedy, R.: Effect of posture on blood pressure in the elderly. Br. Heart J. 35(5), 527 (1973)CrossRefGoogle Scholar
  19. 19.
    Nardo, C. J., Chambless, L. E., Light, K. C., Rosamond, W. D., Sharrett, A. R., Tell, G. S, Heiss, G.: Descriptive epidemiology of blood pressure response to change in body position the aric study. Hypertension 33(5), 1123–1129 (1999)Google Scholar
  20. 20.
    Muehlsteff, J., Aubert, X., Morren, G.: Continuous cuff-less blood pressure monitoring based on the pulse arrival time approach: The impact of posture. In: 30th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society, EMBS, pp. 1691–1694. Wiley-IEEE Press, Hoboken (2008)Google Scholar
  21. 21.
    Gesche, H., Grosskurth, D., Küchler, G., Patzak, A.: Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur. J. Appl. Physiol. 112(1), 309–315 (2012)CrossRefGoogle Scholar
  22. 22.
    Jadooei, A., Zaderykhin, O., Shulgin, V.: Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time. In: XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), IEEE, pp. 297–301. Wiley-IEEE Press, Hoboken (2013)Google Scholar
  23. 23.
    Zhang, Q., Shi, Y., Teng, D., Dinh, A., Ko, S-B., Chen, L., Basran, J., Bello-Haas, D., Choi, Y., et al.: Pulse transit time-based blood pressure estimation using hilbert-huang transform. In: Annual International Conference of the IEEE- EMBC Engineering in Medicine and Biology Society, pp. 1785–1788 Wiley-IEEE Press, Hoboken (2009)Google Scholar
  24. 24.
    Yoon, Y., Cho, J.H., Yoon, G.: Non-constrained blood pressure monitoring using ecg and ppg for personal healthcare. J. Med. Syst. 33(4), 261–266 (2009)CrossRefGoogle Scholar
  25. 25.
    Chan, G.S., Middleton, P.M., Celler, B.G., Wang, L., Lovell, N.H.: Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J. Clin. Monit. Comput. 21(5), 283–293 (2007)CrossRefGoogle Scholar
  26. 26.
    Houtveen, J.H., Groot, P.F., Geus, E.J.: Effects of variation in posture and respiration on rsa and pre-ejection period. Psychophysiology 42(6), 713–719 (2005)CrossRefGoogle Scholar
  27. 27.
    Thomas, S. S., Nathan, V., Zong, C., Aroul, P., Philipose, L., Soundarapandian, K., Shi, X., Jafari, R.: Demonstration abstract: biowatch: a wrist watch based physiological signal acquisition system. In: Proceedings of the 13th international symposium on Information processing in sensor networks, pp. 349–350. Wiley-IEEE Press, Hoboken (2014)Google Scholar
  28. 28.
    Thomas, S. S., Nathan, V., Zong, C., Akinbola, E., Aroul, A. L. P., Philipose, L., Soundarapandian, K., Shi, X., Jafari, R.: Biowatch—a wrist watch based signal acquisition system for physiological signals including blood pressure. In: 36th Annual International Conference of the IEEE-EMBC Engineering in Medicine and Biology Society (EMBC), pp. 2286–2289. Wiley-IEEE Press, Hoboken (2014)Google Scholar
  29. 29.
    Nygaard, H.A.: Measuring body mass index (bmi) in nursing home residents: the usefulness of measurement of arm span. Scand. J. Prim. Health Care 26(1), 46–49 (2008)CrossRefGoogle Scholar
  30. 30.
    Poon, C. C., Zhang, Y-T.: Using the changes in hydrostatic pressure and pulse transit time to measure arterial blood pressure. In: 29th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society, EMBS, pp. 2336–2337. Wiley-IEEE Press, Hoboken (2007)Google Scholar
  31. 31.
    Gorlin, R., Knowles, J.H., Storey, C.F.: The valsalva maneuver as a test of cardiac function: pathologic physiology and clinical significance. Am. J. Med. 22(2), 197–212 (1957)CrossRefGoogle Scholar
  32. 32.
    Yan, I. R., Poon, C. C., Zhang, Y.: A protocol design for evaluation of wearable cuff-less blood pressure measuring devices. In: Annual International Conference of the IEEE-EMBC Engineering in Medicine and Biology Society, EMBC, pp. 7045–7047. Wiley-IEEE Press, Hoboken (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Viswam Nathan
    • 1
  • Simi Susan Thomas
    • 2
  • Roozbeh Jafari
    • 1
    Email author
  1. 1.Center for Remote Health Technologies and Systems College StationTexas A&M UniversityCollege StationUSA
  2. 2.Intel CorporationHillsboroUSA

Personalised recommendations