Skip to main content

Smart Watches for Physiological Monitoring: A Case Study on Blood Pressure Measurement

  • Chapter
  • First Online:
Anticipation and Medicine

Abstract

Given the close coupling between wearable devices and the human body, a natural application for these devices is to inform the user of their physiological status. An important point is the potential for wearables to empower the user to monitor his/her own health rather than rely solely on medical professionals or sophisticated medical equipment. This makes it more convenient for the user to monitor certain vital signs more often and this continuous monitoring can prove crucial in diagnosing certain conditions. Pervasive monitoring allows for collection of a large amount of data, which in turn can allow treatments in medicine that are anticipatory rather than reactionary. We emphasize the importance of the design of convenient, wearable physiological sensors by looking in-depth at one specific wearable device called BioWatch, which can be used to non-invasively and continuously measure blood pressure from the wrist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nadin, M.: Medicine: the decisive test of anticipation. In: Nadin, M. (ed.) Anticipation and Medicine, pp. 1–25. Springer, Cham (2016)

    Google Scholar 

  2. Murphy, S.L., Xu, J., Kochanek, K.D.: Deaths: final data for 2010. Nat. Vital Statist. Rep. 61(4), 1–118 (2013)

    Google Scholar 

  3. Poon, C., Zhang, Y.: Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time> In: 27th Annual International Conference of the, IEEE-EMBS Engineering in Medicine and Biology Society. , pp. 5877–5880, Wiley-IEEE Press, Hoboken (2006)

    Google Scholar 

  4. Ciaccio, E.J., Drzewiecki, G.M.: Tonometric arterial pulse sensor with noise cancellation. IEEE Trans. Biomed. Eng. 55(10), 2388–2396 (2008). (Wiley-IEEE Press, Hoboken)

    Article  Google Scholar 

  5. Park, M., Kang, H. J., Huh, Y., Kim, K-C.: Cuffless and noninvasive measurement of systolic blood pressure, diastolic blood pressure, mean arterial pressure and pulse pressure using radial artery tonometry pressure sensor with concept of korean traditional medicine. In: 29th Annual International Conference of the IEEE-EMBS 2007 Engineering in Medicine and Biology Society, pp. 3597–3600. Wiley-IEEE Press, Hoboken (2007)

    Google Scholar 

  6. Hennig, A., Patzak, A.: Continuous blood pressure measurement using pulse transit time. Somnologie-Schlafforschung und Schlafmedizin 17(22), 104–110 (2013)

    Article  Google Scholar 

  7. Cattivelli, F. S., Garudadri, H.: Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration. In: Sixth International Workshop on Body Sensor Networks Wearable and Implantable Body Sensor Networks, pp. 114–119 Wiley-IEEE Press, Hoboken (2009)

    Google Scholar 

  8. Ahlstrom, C., Johansson, A., Uhlin, F., Länne, T., Ask, P.: Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients”. J. Artif. Organs 8(3), 192–197 (2005)

    Article  Google Scholar 

  9. Chandrasekaran, V., Dantu, R., Jonnada, S., Thiyagaraja, S., Subbu, K.: Cuffless differential blood pressure estimation using smart phones. IEEE Trans. Biomed. Eng. 60, 1080–1089 (2013). (Wiley-IEEE Press, Hoboken)

    Article  Google Scholar 

  10. Fung, P., Dumont, G., Ries, C., Mott, C., Ansermino, M.: Continuous noninvasive blood pressure measurement by pulse transit time. In: 26th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society. IEMBS ’04, vol. 1, pp. 738–741. Wiley-IEEE Press, Hoboken (2004)

    Google Scholar 

  11. Li, Y., Wang, Z., Zhang, L., Yang, X., Song, J.: Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time Australas. Phys. Eng. Sci. Med. 37, 367–376 (2014)

    Article  Google Scholar 

  12. Lass, J., Meigas, K., Karai, D., Kattai, R., Kaik, J., Rossmann, M.: Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEMBS’04, vol. 1, pp. 2239–2242, Wiley-IEEE Press, Hoboken (2004)

    Google Scholar 

  13. Ma, T., Zhang, Y.: A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. In: 27th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society, pp. 996–999. Wiley-IEEE Press, Hoboken (2005)

    Google Scholar 

  14. Zheng, Y., Yan, B. P., Zhang, Y., Yu, C., Poon, C. C.: Wearable cuff-less ptt-based system for overnight blood pressure monitoring. In: 35th Annual International Conference of the IEEE- EMBC Engineering in Medicine and Biology Society (EMBC) pp. 6103–6106. Wiley-IEEE Press, Hoboken (2013)

    Google Scholar 

  15. Kim, Y., Lee, J.: Cuffless and non-invasive estimation of a continuous blood pressure based on ptt. In: 2nd International Conference on ITCS Information Technology Convergence and Services (ITCS), pp. 1–4, Wiley-IEEE Press, Hoboken (2010)

    Google Scholar 

  16. Furedy, J.J., Szabo, A., Péronnet, F.: Effects of psychological and physiological challenges on heart rate, t-wave amplitude, and pulse-transit time. Int. J. Psychophysiol. 22(3), 173–183 (1996)

    Article  Google Scholar 

  17. Gellman, M., Spitzer, S., Ironson, G., Llabre, M., Saab, P., Pasin, R.D., Weidler, D.J., Schneiderman, N.: Posture, place, and mood effects on ambulatory blood pressure. Psychophysiology 27(55), 544–551 (1990)

    Article  Google Scholar 

  18. Caird, F., Andrews, G., Kennedy, R.: Effect of posture on blood pressure in the elderly. Br. Heart J. 35(5), 527 (1973)

    Article  Google Scholar 

  19. Nardo, C. J., Chambless, L. E., Light, K. C., Rosamond, W. D., Sharrett, A. R., Tell, G. S, Heiss, G.: Descriptive epidemiology of blood pressure response to change in body position the aric study. Hypertension 33(5), 1123–1129 (1999)

    Google Scholar 

  20. Muehlsteff, J., Aubert, X., Morren, G.: Continuous cuff-less blood pressure monitoring based on the pulse arrival time approach: The impact of posture. In: 30th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society, EMBS, pp. 1691–1694. Wiley-IEEE Press, Hoboken (2008)

    Google Scholar 

  21. Gesche, H., Grosskurth, D., Küchler, G., Patzak, A.: Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur. J. Appl. Physiol. 112(1), 309–315 (2012)

    Article  Google Scholar 

  22. Jadooei, A., Zaderykhin, O., Shulgin, V.: Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time. In: XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), IEEE, pp. 297–301. Wiley-IEEE Press, Hoboken (2013)

    Google Scholar 

  23. Zhang, Q., Shi, Y., Teng, D., Dinh, A., Ko, S-B., Chen, L., Basran, J., Bello-Haas, D., Choi, Y., et al.: Pulse transit time-based blood pressure estimation using hilbert-huang transform. In: Annual International Conference of the IEEE- EMBC Engineering in Medicine and Biology Society, pp. 1785–1788 Wiley-IEEE Press, Hoboken (2009)

    Google Scholar 

  24. Yoon, Y., Cho, J.H., Yoon, G.: Non-constrained blood pressure monitoring using ecg and ppg for personal healthcare. J. Med. Syst. 33(4), 261–266 (2009)

    Article  Google Scholar 

  25. Chan, G.S., Middleton, P.M., Celler, B.G., Wang, L., Lovell, N.H.: Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J. Clin. Monit. Comput. 21(5), 283–293 (2007)

    Article  Google Scholar 

  26. Houtveen, J.H., Groot, P.F., Geus, E.J.: Effects of variation in posture and respiration on rsa and pre-ejection period. Psychophysiology 42(6), 713–719 (2005)

    Article  Google Scholar 

  27. Thomas, S. S., Nathan, V., Zong, C., Aroul, P., Philipose, L., Soundarapandian, K., Shi, X., Jafari, R.: Demonstration abstract: biowatch: a wrist watch based physiological signal acquisition system. In: Proceedings of the 13th international symposium on Information processing in sensor networks, pp. 349–350. Wiley-IEEE Press, Hoboken (2014)

    Google Scholar 

  28. Thomas, S. S., Nathan, V., Zong, C., Akinbola, E., Aroul, A. L. P., Philipose, L., Soundarapandian, K., Shi, X., Jafari, R.: Biowatch—a wrist watch based signal acquisition system for physiological signals including blood pressure. In: 36th Annual International Conference of the IEEE-EMBC Engineering in Medicine and Biology Society (EMBC), pp. 2286–2289. Wiley-IEEE Press, Hoboken (2014)

    Google Scholar 

  29. Nygaard, H.A.: Measuring body mass index (bmi) in nursing home residents: the usefulness of measurement of arm span. Scand. J. Prim. Health Care 26(1), 46–49 (2008)

    Article  Google Scholar 

  30. Poon, C. C., Zhang, Y-T.: Using the changes in hydrostatic pressure and pulse transit time to measure arterial blood pressure. In: 29th Annual International Conference of the IEEE-EMBS Engineering in Medicine and Biology Society, EMBS, pp. 2336–2337. Wiley-IEEE Press, Hoboken (2007)

    Google Scholar 

  31. Gorlin, R., Knowles, J.H., Storey, C.F.: The valsalva maneuver as a test of cardiac function: pathologic physiology and clinical significance. Am. J. Med. 22(2), 197–212 (1957)

    Article  Google Scholar 

  32. Yan, I. R., Poon, C. C., Zhang, Y.: A protocol design for evaluation of wearable cuff-less blood pressure measuring devices. In: Annual International Conference of the IEEE-EMBC Engineering in Medicine and Biology Society, EMBC, pp. 7045–7047. Wiley-IEEE Press, Hoboken (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Jafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nathan, V., Thomas, S.S., Jafari, R. (2017). Smart Watches for Physiological Monitoring: A Case Study on Blood Pressure Measurement. In: Nadin, M. (eds) Anticipation and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-45142-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45142-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45140-4

  • Online ISBN: 978-3-319-45142-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics