Skip to main content

Lesion Recognition by XPC (Rad4) Protein

  • Chapter
  • First Online:
  • 463 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

DNA contains the blueprint for the proper development, functioning, and reproduction of every organism. DNA in cells is continuously being damaged by a wide variety of environmental sources such as UV rays, pollutants, cigarette smoke, and food toxins [1]. The lesions, if not repaired, can hamper critical cellular functions such as replication and transcription and lead to cell death or turn into genomic instability (mutagenesis) [1–5]. Nucleotide excision repair (NER) is a highly versatile and sophisticated repair pathway that has been conserved from yeast to humans to counter these diverse lesions and keep the genome integrity. NER removes primarily bulky, helix distorting damages induced by environmental sources that include intra-strand crosslinks such as (6–4) photo product and cyclobutane pyrimidine dimer (CPD) generated by UV light, a variety of adducts formed by environmental pollutants such as polycylic aromatic hydrocarbons (PAH) (induced by components in cigarette smoke) or aromatic amines, interstrand crosslinks created by chemotherapeutic agents such as cisplatin, and endogenous metabolites including reactive oxygen species ([1, 6, 7]. NER in human cell is a complex biochemical process that requires several proteins [7–15]).

Statement of Authorship

Major part of Chap. 4 contains materials from the following two papers: “Kinetic gating mechanism of DNA damage recognition by Rad4/XPC,”, published in Nature Communications, Jan. 2015 (1) and “Twist-open mechanism of DNA damage recognition by Rad4/XPC nucleotide excision repair complex,” accepted for publication in PNAS, Feb. 2016 (2).

(1) Xuejing Chen*, Yogambigai Velmurugu*, Guanqun Zheng, Beom Seok Park, Yoonjung Shim, Youngchang Kim, Lili Liu, Bennett Van Houten, Chuan He, Anjum Ansari and Jung-Hyun Min, Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nat. Commun. 6, 5849 (2015).

(2) Yogambigai Velmurugu*, Xuejing Chen*, Phillip Slogoff-Sevilla, Jung-Hyun Min, and Anjum Ansari, Twist-open mechanism of DNA damage recognition by Rad4/XPC nucleotide excision repair complex. Accepted for publication in Proc. Natl. Acad. Sci. (2016).

*Co-first authors

Author contributions for publication (1): X. C. carried out protein engineering and purifications, protein–DNA crosslinking and crystallization experiments with contributions from B. P. and Y. S. G. Z. and C. H. synthesized modified oligonucleotides for crosslinking experiments. X. C., Y. K., and J. H. M. collected and analyzed crystallographic data. J. H. M and Y. K. did model building and refinement. Y. V. and A. A. designed the fluorescence measurements on complexes with 2AP-labeled DNA substrates with contributions from X. C. and J. H. M. Y. V. carried out the equilibrium and T-jump experiments and analyzed the relaxation traces to obtain the DNA-opening times. L. L. and B. V. H. carried out the AFM studies. A. A. and J. M. wrote the manuscript with contributions from all authors.

Author contributions for publication (2): X. C. carried out protein engineering and purifications of Rad4 protein and its mutants. Y. V. and A. A. designed the fluorescence measurements on complexes with tCo-tCnitro-labeled DNA substrates with contributions from X. C. and J. H. M. Y. V., X. C., and P. S-S. carried out the equilibrium temperature scan measurements. X. C. measured the melting temperatures of all DNA constructs reported in this chapter, and also measured the binding affinities of the different DNA constructs in complex with wild-type and mutant Rad4 proteins. Y. V. carried out all the T-jump experiments and analyzed the relaxation traces to obtain the DNA dynamics in the presence of Rad4. A. A. and J. M. wrote the manuscript with contributions from all authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.C. Gillet, O.D. Schärer, Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106, 253–276 (2006)

    Article  Google Scholar 

  2. S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease. Nature 461(7267), 1071–1078 (2009)

    Article  ADS  Google Scholar 

  3. J.E. Cleaver, Cancer in Xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer 5, 564–573 (2005)

    Article  Google Scholar 

  4. J.E. Cleaver, E.T. Lam, I. Revet, Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768 (2009)

    Article  Google Scholar 

  5. B. Pascucci, M. D’Errico, E. Parlanti, S. Giovannini, E. Dogliotti, Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating. Biochemistry 76, 4–15 (2011)

    Google Scholar 

  6. I. Kemileri, I. Karakasilioti, G.A. Garinis, Nucleotide excision repair: new tricks with old bricks. Cell 28, 566–572 (2012)

    Google Scholar 

  7. J. de Boer, J.H. Hoeijmakers, Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000)

    Article  Google Scholar 

  8. E.C. Friedberg, G.C. Walker, W. Siede, DNA Repair and Mutagenesis (ASM Press, Washington, 1995)

    Google Scholar 

  9. T. Lindahl, R.D. Wood, Quality control by DNA repair. Science 286, 1897–1905 (1999)

    Article  Google Scholar 

  10. J.H. Hoeijmakers, Genome maintenance mechanisms for preventing cancer. Nature 411(6835), 366–374 (2001)

    Article  ADS  Google Scholar 

  11. A. Sancar, DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996)

    Article  Google Scholar 

  12. S. Prakash, L. Prakash, Nucleotide excision repair in yeast. Mutat. Res. 451, 13–24 (2000)

    Article  Google Scholar 

  13. W.L. de Laat, N.G.J. Jaspers, J.H.J. Hoeijmakers, Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999)

    Article  Google Scholar 

  14. C. Petit, A. Sancar, Nucleotide excision repair: from E. coli to man. Biochimie 81, 15–25 (1999)

    Article  Google Scholar 

  15. R.D. Wood, Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997)

    Article  Google Scholar 

  16. E.K. Achter, G. Felsenfeld, The conformation of single-strand polynucleotides in solution: sedimentation studies of apurinic acid. Biopolymers 10(9), 1625–1634 (1971)

    Article  Google Scholar 

  17. A. Lahmann, DNA repair-deficient disseases, xeroderma pigmentosum, cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–1111 (2003)

    Article  Google Scholar 

  18. M.T. Hess, U. Schwitter, M. Petretta, B. Giese, H. Naegeli, Bipartite substrate discrimination by human nucleotide excision repair. Proc. Natl. Acad. Sci. U. S. A. 94, 6664–6669 (1997)

    Article  ADS  Google Scholar 

  19. D. Batty, V. Rapic-Otrin, A.S. Levine, R.D. Wood, Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J. Mol. Biol. 300, 275–290 (2000)

    Article  Google Scholar 

  20. T. Hey, G. Lipps, K. Sugasawa, S. Iwai, F. Hanaoka, G. Krauss, The XPC–HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry 41, 6583–6587 (2002)

    Article  Google Scholar 

  21. R. Kusumoto, C. Masutani, K. Sugasawa, S. Iwai, M. Araki, A. Uchida, T. Mizukoshi, F. Hanaoka, Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat. Res. 485, 219–227 (2001)

    Article  Google Scholar 

  22. J.T. Reardon, D. Mu, A. Sancar, Overproduction, purification and characterization of the XPC subunit of the human DNA repair excision nuclease. J. Biol. Chem. 271, 19451–19456 (1996)

    Article  Google Scholar 

  23. C.G. Bunick, M.R. Miller, B.E. Fuller, E. Fanning, W.J. Chazin, Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry 45, 14965–14979 (2006)

    Article  Google Scholar 

  24. K.S. Tergo, J.J. Turchi, Pre-steady state binding of damaged DNA by XPC-hHR23B reveals a kinetic mechanism for damage discrimination. Biochemistry 45, 1961–1969 (2006)

    Article  Google Scholar 

  25. V. Mocquet, K. Kropachev, M. Kolbanovskiy, A. Kolbanovskiy, A. Tapias, Y. Cai, S. Broyde, N.E. Geacintov, J.M. Egly, The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J. 26, 2923–2932 (2007)

    Article  Google Scholar 

  26. Y. Cai, K. Kropachev, R. Xu, Y. Tang, M. Kolbanovskii, A. Kolbanovskii, S. Amin, D.J. Patel, S. Broyde, N.E. Geacintov, Distant neighbor base sequence context effects in human nucleotide excision repair of a benzo[a]pyrenederived DNA lesion. J. Mol. Biol. 399, 397–409 (2010)

    Article  Google Scholar 

  27. H. Mu et al., Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Res. 40(19), 9675–9690 (2012)

    Article  Google Scholar 

  28. J.-E. Yeo et al., The efficiencies of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair. Chem. Res. Toxicol. 25(11), 2462–2468 (2012)

    Article  MathSciNet  Google Scholar 

  29. T. Riedl, F. Hanaoka, J.-M. Egly, The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22(19), 5293–5303 (2003)

    Article  Google Scholar 

  30. M.S. Luijsterburg et al., Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. J. Cell Biol. 189(3), 445–463 (2010)

    Article  Google Scholar 

  31. D. Hoogstraten et al., Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J. Cell Sci. 121(Pt 17), 2850–2859 (2008)

    Article  Google Scholar 

  32. M.S. Luijsterburg et al., Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC. J. Cell Sci. 120(Pt 15), 2706–2716 (2007)

    Article  Google Scholar 

  33. W. Vermeulen, Dynamics of mammalian NER proteins. DNA Repair 10(7), 760–771 (2011)

    Article  Google Scholar 

  34. A. Uchida et al., The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair 1(6), 449–461 (2002)

    Article  Google Scholar 

  35. M. Yokoi et al., The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275(13), 9870–9875 (2000)

    Article  Google Scholar 

  36. J.H. Min, N.P. Pavletich, Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449(7162), 570–575 (2007)

    Article  ADS  Google Scholar 

  37. K. Sugasawa et al., A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15(5), 507–521 (2001)

    Article  Google Scholar 

  38. X. Chen et al., Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nat. Commun. 6, 5849 (2015)

    Article  ADS  Google Scholar 

  39. T. Buterin et al., DNA quality control by conformational readout on the undamaged strand of the double helix. Chem. Biol. 12(8), 913–922 (2005)

    Article  Google Scholar 

  40. A. Janićijević, K. Sugasawa, Y. Shimizu, F. Hanaoka, N. Wijgers, M. Djurica, J.H. Hoeijmakers, C. Wyman, DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair 2(3), 325–336 (2003)

    Article  Google Scholar 

  41. K. Borjesson et al., Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems. J. Am. Chem. Soc. 131(12), 4288–4293 (2009)

    Article  Google Scholar 

  42. S. Preus et al., Characterization of nucleobase analogue FRET acceptor tCnitro. J. Phys. Chem. B 114(2), 1050–1056 (2010)

    Article  Google Scholar 

  43. C.R. Cantor, M.M. Warshaw, H. Shapiro, Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers 9(9), 1059–1077 (1970)

    Article  Google Scholar 

  44. M.J. Cavaluzzi, P.N. Borer, Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res. 32(1), e13 (2004)

    Article  Google Scholar 

  45. S. Preus et al., Photophysical and structural properties of the fluorescent nucleobase analogues of the tricyclic cytosine (tC) family. Phys. Chem. Chem. Phys. 12(31), 8881–8892 (2010)

    Article  Google Scholar 

  46. R.M. Clegg, Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992)

    Article  Google Scholar 

  47. C.G. Kalodimos et al., Structure and flexibility adaptation in nonspecific and specific protein–DNA complexes. Science 305(5682), 386–389 (2004)

    Article  ADS  Google Scholar 

  48. J.B. Parker et al., Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 449(7161), 433–437 (2007)

    Article  ADS  Google Scholar 

  49. A. Banerjee et al., Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434(7033), 612–618 (2005)

    Article  ADS  Google Scholar 

  50. A. Banerjee, G.L. Verdine, A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex. Proc. Natl. Acad. Sci. U. S. A. 103(41), 15020–15025 (2006)

    Article  ADS  Google Scholar 

  51. C. Yi et al., Duplex interrogation by a direct DNA repair protein in search of base damage. Nat. Struct. Mol. Biol. 19(7), 671–676 (2012)

    Article  Google Scholar 

  52. H. Viadiu, A.K. Aggarwal, Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Mol. Cell 5(5), 889–895 (2000)

    Article  Google Scholar 

  53. J.T. Stivers, K.W. Pankiewicz, K.A. Watanabe, Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38(3), 952–963 (1999)

    Article  Google Scholar 

  54. J. Fei et al., Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol. 9(10), e1001183 (2011)

    Article  Google Scholar 

  55. U. Camenisch et al., Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J. 28(16), 2387–2399 (2009)

    Article  Google Scholar 

  56. J.G. Moe, I.M. Russu, Kinetics and energetics of base-pair opening in 5′-d(CGCGAATTCGCG)-3′ and a substituted dodecamer containing G.T mismatches. Biochemistry 31(36), 8421–8428 (1992)

    Article  Google Scholar 

  57. D. Coman, I.M. Russu, A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA. Biophys. J. 89(5), 3285–3292 (2005)

    Article  ADS  Google Scholar 

  58. H. Zheng et al., Base flipping free energy profiles for damaged and undamaged DNA. Chem. Res. Toxicol. 23(12), 1868–1870 (2010)

    Article  ADS  Google Scholar 

  59. J.I. Friedman, J.T. Stivers, Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry 49(24), 4957–4967 (2010)

    Article  Google Scholar 

  60. J.D. Schonhoft, J.T. Stivers, Timing facilitated site transfer of an enzyme on DNA. Nat. Chem. Biol. 8(2), 205–210 (2012)

    Article  Google Scholar 

  61. P.C. Blainey et al., A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. U. S. A. 103(15), 5752–5757 (2006)

    Article  ADS  Google Scholar 

  62. J. Gorman et al., Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol. Cell 28(3), 359–370 (2007)

    Article  Google Scholar 

  63. K. Kropachev et al., Adenine-DNA adducts derived from the highly tumorigenic Dibenzo[a, l]pyrene are resistant to nucleotide excision repair while guanine adducts are not. Chem. Res. Toxicol. 26(5), 783–793 (2013)

    Article  Google Scholar 

  64. Y.M. Wang, R.H. Austin, E.C. Cox, Single molecule measurements of repressor protein 1D diffusion on DNA. Phys. Rev. Lett. 97(4), 048302 (2006)

    Article  ADS  Google Scholar 

  65. I. Bonnet et al., Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res. 36(12), 4118–4127 (2008)

    Article  ADS  Google Scholar 

  66. A. Tafvizi et al., Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95(1), L01–L03 (2008)

    Article  Google Scholar 

  67. S.R. Nelson et al., Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases. Proc. Natl. Acad. Sci. U. S. A. 111(20), E2091–E2099 (2014)

    Article  ADS  Google Scholar 

  68. Y. Shi et al., Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl. Acad. Sci. U. S. A. 109(41), 16510–16515 (2012)

    Article  ADS  Google Scholar 

  69. V. Posse et al., The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation. Nucleic Acids Res. 42(6), 3638–3647 (2014)

    Article  Google Scholar 

  70. A. Iqbal et al., Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proc. Natl. Acad. Sci. U. S. A. 105(32), 11176–11181 (2008)

    Article  ADS  Google Scholar 

  71. S. Ranjit, K. Gurunathan, M. Levitus, Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET. J. Phys. Chem. B 113(22), 7861–7866 (2009)

    Article  Google Scholar 

  72. M.A. El Hassan, C.R. Calladine, Two distinct modes of protein-induced bending in DNA. J. Mol. Biol. 282(2), 331–343 (1998)

    Article  Google Scholar 

  73. S. Preus et al., FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids. Nucleic Acids Res. 41(1), e18 (2013)

    Article  Google Scholar 

  74. P. Sandin et al., Characterization and use of an unprecedentedly bright and structurally non-perturbing fluorescent DNA base analogue. Nucleic Acids Res. 36(1), 157–167 (2008)

    Article  Google Scholar 

  75. Y. Jing, J.F. Kao, J.S. Taylor, Thermodynamic and base-pairing studies of matched and mismatched DNA dodecamer duplexes containing cis-syn, (6-4) and Dewar photoproducts of TT. Nucleic Acids Res. 26(16), 3845–3853 (1998)

    Article  Google Scholar 

  76. S.N. Huang, D.M. Crothers, The role of nucleotide cofactor binding in cooperativity and specificity of MutS recognition. J. Mol. Biol. 384(1), 31–47 (2008)

    Article  Google Scholar 

  77. L.E. Sass et al., Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA–MutS complexes. Biochemistry 49(14), 3174–3190 (2010)

    Article  Google Scholar 

  78. J.J. Hopfield, Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U. S. A. 71(10), 4135–4139 (1974)

    Article  ADS  Google Scholar 

  79. J. Ninio, Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975)

    Article  Google Scholar 

  80. Y. Savir, T. Tlusty, RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40, 388–396 (2010)

    Article  Google Scholar 

  81. H. Naegeli, K. Sugasawa, The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair 10, 673–683 (2011)

    Article  Google Scholar 

  82. K. Sugasawa, Y. Okuda, M. Saijo, R. Nishi, N. Matsuda, G. Chu, T. Mori, S. Iwai, K. Tanaka, K. Tanaka, F. Hanaoka, UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387–400 (2005)

    Article  Google Scholar 

  83. N. Le May, J.M. Egly, F. Coin, True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J. Nucleic Acids 2010, 616342 (2010)

    Google Scholar 

  84. Y.W. Fong, C. Inouye, T. Yamaguchi, C. Cattoglio, I. Grubisic, R. Tjian, A DNA repair complex functions as an oct4/sox2 coactivator in embryonic stem cells. Cell 147, 120–131 (2011)

    Article  Google Scholar 

  85. M. Slutsky, L.A. Mirny, Kinetics of protein–DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87(6), 4021–4035 (2004)

    Article  ADS  Google Scholar 

  86. Y. Savir, T. Tlusty, Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. PLoS One 2(5), e468 (2007)

    Article  ADS  Google Scholar 

  87. R. Zhou et al., SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146(2), 222–232 (2011)

    Article  Google Scholar 

  88. J.E. Wibley, T.R. Waters, K. Haushalter, G.L. Verdine, L.H. Pearl, Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 6, 1647–1659 (2003)

    Article  Google Scholar 

  89. A. Banerjee, W.L. Santos, G.L. Verdine, Structure of a DNA glycosylase searching for lesions. Science 311(5764), 1153–1157 (2006)

    Article  ADS  Google Scholar 

  90. J. Iwahara, M. Zweckstetter, G.M. Clore, NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Proc. Natl. Acad. Sci. U. S. A. 103(41), 15062–15067 (2006)

    Article  ADS  Google Scholar 

  91. A. Maiti et al., Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc. Natl. Acad. Sci. U. S. A. 105(26), 8890–8895 (2008)

    Article  ADS  Google Scholar 

  92. Y. Qi et al., Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature 462(7274), 762–766 (2009)

    Article  ADS  Google Scholar 

  93. J.I. Friedman, A. Majumdar, J.T. Stivers, Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage. Nucleic Acids Res. 37, 3493–3500 (2009)

    Article  Google Scholar 

  94. J.S. Leith, A. Tafvizi, F. Huang, W.E. Uspal, P.S. Doyle, A.R. Fersht, L.A. Mirny, A.M. van Oijen, Sequence-dependent sliding kinetics of p53. Proc. Natl. Acad. Sci. U. S. A. 109, 16552–16557 (2012)

    Article  ADS  Google Scholar 

  95. H. Ghodke et al., Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates. Proc. Natl. Acad. Sci. U. S. A. 111(18), E1862–E1871 (2014)

    Article  ADS  Google Scholar 

  96. C. Cao et al., Dynamic opening of DNA during the enzymatic search for a damaged base. Nat. Struct. Mol. Biol. 11(12), 1230–1236 (2004)

    Article  Google Scholar 

  97. V.V. Koval, N.A. Kuznetsov, A.A. Ishchenko, M.K. Saparbaev, O.S. Fedorova, Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle. Mutat. Res. 685, 3–10 (2010)

    Article  Google Scholar 

  98. N.A. Kuznetsov et al., Conformational dynamics of DNA repair by Escherichia coli endonuclease III. J. Biol. Chem. 290(23), 14338–14349 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Velmurugu, Y. (2017). Lesion Recognition by XPC (Rad4) Protein. In: Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45129-9_4

Download citation

Publish with us

Policies and ethics