Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 483 Accesses

Abstract

Integration host factor (IHF) is a small hetero dimeric protein (~20 kDa), ubiquitous in eubacteria. It binds to DNA in a sequence-specific manner and causes ~35-bp long cognate site of DNA to bend by >160° [1]. Even though IHF was first discovered as a host factor for bacteriophage λ integration, where λ phage cleverly facilitates its E. coli host’s protein IHF to infest its target, IHF also aids in chromosomal compaction as well as in the assembly of higher order nucleo-protein complexes necessary for replication initiation, some site-specific recombination and transcriptional regulation of certain genes [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.A. Rice et al., Crystal structure of an IHF–DNA complex: a protein-induced DNA U-turn. Cell 87(7), 1295–1306 (1996)

    Article  Google Scholar 

  2. G.M. Dhavan et al., Concerted binding and bending of DNA by Escherichia coli integration host factor. J. Mol. Biol. 315(5), 1027–1037 (2002)

    Article  Google Scholar 

  3. G.M. Perez-Howard, P.A. Weil, J.M. Beechem, Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics. Biochemistry 34(25), 8005–8017 (1995)

    Article  Google Scholar 

  4. S.D. Goodman, S.C. Nicholson, H.A. Nash, Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Proc. Natl. Acad. Sci. U. S. A. 89, 11910–11914 (1992)

    Article  ADS  Google Scholar 

  5. M. Lorenz et al., Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by fluorescence resonance energy transfer. Nucleic Acids Res. 27(23), 4619–4625 (1999)

    Article  Google Scholar 

  6. S.W. Yang, H.A. Nash, Comparison of protein binding to DNA in vivo and in vitro: defining an effective intracellular target. EMBO J. 14(24), 6292–6300 (1995)

    Google Scholar 

  7. S. Wang et al., The specific binding of Escherichia coli integration host factor involves both major and minor grooves of DNA. Biochemistry 34(40), 13082–13090 (1995)

    Article  Google Scholar 

  8. C. Murtin et al., A quantitative UV laser footprinting analysis of the interaction of IHF with specific binding sites: re-evaluation of the effective concentration of IHF in the cell. J. Mol. Biol. 284(4), 949–961 (1998)

    Article  Google Scholar 

  9. J.B. Johnson, S. Stella, J.K. Heiss, Bending and compaction of DNA by proteins, in Protein–Nucleic Acid Interactions, ed. by P.A. Rice, C.C. Correll (Royal Society of Chemistry, Cambridge, 2008)

    Google Scholar 

  10. B.M. Ali et al., Compaction of single DNA molecules induced by binding of integration host factor (IHF). Proc. Natl. Acad. Sci. U. S. A. 98(19), 10658–10663 (2001)

    Article  Google Scholar 

  11. D. Skoko et al., Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA–protein complexes. Biochemistry 43(43), 13867–13874 (2004)

    Article  Google Scholar 

  12. J. van Noort et al., Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. U. S. A. 101(18), 6969–6974 (2004)

    Article  ADS  Google Scholar 

  13. D. Sagi et al., Modulation of DNA conformations through the formation of alternative high-order HU-DNA complexes. J. Mol. Biol. 341(2), 419–428 (2004)

    Article  Google Scholar 

  14. J. Lin, H. Chen, P. Droge, J. Yan, Physical organization of DNA by multiple nonspecific DNA bending modes of integration host factor (IHF). PLoS One 7, e49885 (2012)

    Article  ADS  Google Scholar 

  15. A. Ansari, S.V. Kuznetsov, Dynamics and mechanism of DNA-bending proteins in binding site recognition, in Biophysics of DNA–Protein Interactions, ed. by M.C. Williams, L.J. Maher III (Springer, New York, 2010)

    Google Scholar 

  16. C.C. Yang, H.A. Nash, The interaction of E. coli IHF protein with its specific binding sites. Cell 57(5), 869–880 (1989)

    Article  Google Scholar 

  17. L.M. Hales, R.I. Gumport, J.F. Gardner, Examining the contribution of a dA + dT element to the conformation of Escherichia coli integration host factor–DNA complexes. Nucleic Acids Res. 24(9), 1780–1786 (1996)

    Article  Google Scholar 

  18. A. Travers, DNA-protein interactions: IHF—the master bender. Curr. Biol. 7(4), R252–R254 (1997)

    Article  Google Scholar 

  19. K.K. Swinger, P.A. Rice, IHF and HU: flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14(1), 28–35 (2004)

    Article  Google Scholar 

  20. I. Tanaka et al., 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature 310(5976), 376–381 (1984)

    Article  ADS  Google Scholar 

  21. H. Vis et al., Solution structure of the HU protein from Bacillus stearothermophilus. J. Mol. Biol. 254(4), 692–703 (1995)

    Article  Google Scholar 

  22. R. Boelens et al., Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy. Biopolymers 40(5), 553–559 (1996)

    Article  Google Scholar 

  23. S.W. White et al., The high-resolution structure of DNA-binding protein HU from Bacillus stearothermophilus. Acta Crystallogr. D Biol. Crystallogr. 55(Pt 4), 801–809 (1999)

    Article  Google Scholar 

  24. P. Vivas et al., Mapping the transition state for DNA bending by IHF. J. Mol. Biol. 418(5), 300–315 (2012)

    Article  Google Scholar 

  25. K.K. Swinger et al., Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22(14), 3749–3760 (2003)

    Article  Google Scholar 

  26. R.M. Saecker, M.T. Record Jr., Protein surface salt bridges and paths for DNA wrapping. Curr. Opin. Struct. Biol. 12, 311–319 (2002)

    Article  Google Scholar 

  27. P.A. Rice, Making DNA do a U-turn: IHF and related proteins. Curr. Opin. Struct. Biol. 7, 86–93 (1997)

    Article  Google Scholar 

  28. K.K. Swinger, P.A. Rice, Structure-based analysis of HU-DNA binding. J. Mol. Biol. 365(4), 1005–1016 (2007)

    Article  Google Scholar 

  29. S. Sugimura, D.M. Crothers, Stepwise binding and bending of DNA by Escherichia coli integration host factor. Proc. Natl. Acad. Sci. U. S. A. 103(49), 18510–18514 (2006)

    Article  ADS  Google Scholar 

  30. S.V. Kuznetsov et al., Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Proc. Natl. Acad. Sci. U. S. A. 103(49), 18515–18520 (2006)

    Article  ADS  Google Scholar 

  31. A. Hillisch, M. Lorenz, S. Diekmann, Recent advances in FRET: distance determination in protein–DNA complexes. Curr. Opin. Struct. Biol. 11(2), 201–207 (2001)

    Article  Google Scholar 

  32. D. Coman, I.M. Russu, A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA. Biophys. J. 89(5), 3285–3292 (2005)

    Article  ADS  Google Scholar 

  33. G.M. Dhavan et al., Decreased imino proton exchange and base-pair opening in the IHF–DNA complex measured by NMR. J. Mol. Biol. 288(4), 659–671 (1999)

    Article  Google Scholar 

  34. K.M. Mouw, P.A. Rice, Shaping the Borrelia burgdorferi genome: crystal structure and binding properties of the DNA-bending Hbb. Mol. Microbiol. 63, 1319–1330 (2007)

    Article  Google Scholar 

  35. P. Vivas, S.V. Kuznetsov, A. Ansari, New insights into the transition pathway from nonspecific to specific complex of DNA with Escherichia coli integration host factor. J. Phys. Chem. B 112, 5997–6007 (2008)

    Article  Google Scholar 

  36. J.T. Stivers, K.W. Pankiewicz, K.A. Watanabe, Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38(3), 952–963 (1999)

    Article  Google Scholar 

  37. B. van den Broek, M.C. Noom, G.J. Wuite, DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway. Nucleic Acids Res. 33(8), 2676–2684 (2005)

    Article  Google Scholar 

  38. P.C. Blainey et al., A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. U. S. A. 103(15), 5752–5757 (2006)

    Article  ADS  Google Scholar 

  39. Y.M. Wang, R.H. Austin, E.C. Cox, Single molecule measurements of repressor protein 1D diffusion on DNA. Phys. Rev. Lett. 97(4), 048302 (2006)

    Article  ADS  Google Scholar 

  40. A. Tafvizi et al., Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95(1), L01–L03 (2008)

    Article  Google Scholar 

  41. I. Bonnet et al., Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res. 36(12), 4118–4127 (2008)

    Article  ADS  Google Scholar 

  42. J. Gorman et al., Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol. Cell 28(3), 359–370 (2007)

    Article  Google Scholar 

  43. D. Barsky, T.A. Laurence, C. Venclovas, How proteins slide on DNA, in Biophysics of DNA–Protein Interactions, ed. by M.C. Williams, L.J. Maher (Springer, New York, 2010), pp. 39–68

    Chapter  Google Scholar 

  44. M. Slutsky, L.A. Mirny, Kinetics of protein–DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87(6), 4021–4035 (2004)

    Article  ADS  Google Scholar 

  45. H.X. Zhou, Rapid search for specific sites on DNA through conformational switch of nonspecifically bound proteins. Proc. Natl. Acad. Sci. U. S. A. 108(21), 8651–8656 (2011)

    Article  ADS  Google Scholar 

  46. P.J. Steinbach, R. Ionescu, C.R. Matthews, Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding. Biophys. J. 82, 2244–2255 (2002)

    Article  Google Scholar 

  47. A. Grove et al., Localized DNA flexibility contributes to target site selection by DNA-bending proteins. J. Mol. Biol. 260(2), 120–125 (1996)

    Article  MathSciNet  Google Scholar 

  48. P. Vivas, Mechanism of integration host factor, a DNA-bending protein, probed with laser temperature-jump, in Physics (University of Illinois at Chicago, Chicago, 2009)

    Google Scholar 

  49. J.G. Moe, I.M. Russu, Kinetics and energetics of base-pair opening in 5′-d(CGCGAATTCGCG)-3′ and a substituted dodecamer containing G.T mismatches. Biochemistry 31(36), 8421–8428 (1992)

    Article  Google Scholar 

  50. P.K. Bhattacharya, J. Cha, J.K. Barton, 1H NMR determination of base-pair lifetimes in oligonucleotides containing single base mismatches. Nucleic Acids Res. 30(21), 4740–4750 (2002)

    Article  Google Scholar 

  51. C. Cao et al., Dynamic opening of DNA during the enzymatic search for a damaged base. Nat. Struct. Mol. Biol. 11(12), 1230–1236 (2004)

    Article  Google Scholar 

  52. J.B. Parker et al., Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 449(7161), 433–437 (2007)

    Article  ADS  Google Scholar 

  53. T.W. Lynch et al., Integration host factor: putting a twist on protein-DNA recognition. J. Mol. Biol. 330(3), 493–502 (2003)

    Article  Google Scholar 

  54. E.K. Read, R.I. Gumport, J.F. Gardner, Specific recognition of DNA by integration host factor. Glutamic acid 44 of the beta-subunit specifies the discrimination of a T:A from an A:T base pair without directly contacting the DNA. J. Biol. Chem. 275(43), 33759–33764 (2000)

    Article  Google Scholar 

  55. P.A. Rice, C.C. Correll (eds.), in Protein–Nucleic Acid Interactions (The Royal Society of Chemistry, Cambridge, 2008)

    Google Scholar 

  56. C.G. Kalodimos et al., Structure and flexibility adaptation in nonspecific and specific protein–DNA complexes. Science 305(5682), 386–389 (2004)

    Article  ADS  Google Scholar 

  57. L.E. Engler et al., The energetics of the interaction of BamHI endonuclease with its recognition site GGATCC. J. Mol. Biol. 307(2), 619–636 (2001)

    Article  Google Scholar 

  58. L.E. Engler, K.K. Welch, L. Jen-Jacobson, Specific binding by EcoRV endonuclease to its DNA recognition site GATATC. J. Mol. Biol. 269(1), 82–101 (1997)

    Article  Google Scholar 

  59. D.R. Lesser, M.R. Kurpiewski, Jen-Jacobson. Science 250, 776 (1990)

    Article  ADS  Google Scholar 

  60. J.H. Ha, M.W. Capp, M.D. Hohenwalter, M. Baskerville, M.T. Record Jr., Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the “glutamate effect” on protein–DNA interactions. J. Mol. Biol. 228(1), 252–264 (1992)

    Article  Google Scholar 

  61. M.T. Record Jr., C.F. Anderson, P. Mills, M. Mossing, J.H. Roe, Ions as regulators of protein–nucleic acid interactions in vitro and in vivo. Adv. Biophys. 20, 109–135 (1985)

    Article  Google Scholar 

  62. J.A. Holbrook et al., Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface salt-bridges coupled to DNA binding. J. Mol. Biol. 310, 379–401 (2001)

    Article  Google Scholar 

  63. P. Vivas et al., Global analysis of ion dependence unveils hidden steps in DNA binding and bending by integration host factor. J. Chem. Phys. 139(12), 121927 (2013)

    Article  ADS  Google Scholar 

  64. A.D. Mirzabekov, A. Rich, Asymmetric lateral distribution of unshielded phosphate groups in nucleosomal DNA and its role in DNA bending. Proc. Natl. Acad. Sci. U. S. A. 76(3), 1118–1121 (1979)

    Article  ADS  Google Scholar 

  65. G.S. Manning et al., An estimate of the extent of folding of nucleosomal DNA by laterally asymmetric neutralization of phosphate groups. J. Biomol. Struct. Dyn. 6(5), 877–889 (1989)

    Article  Google Scholar 

  66. L.D. Williams, L.J. Maher III, Electrostatic mechanisms of DNA deformation. Annu. Rev. Biophys. Biomol. Struct. 29, 497–521 (2000)

    Article  Google Scholar 

  67. K. Ramge, E. Mayaan, L.J. Maher 3rd, D.M. York, The contribution of phosphate-phosphate repulsions to the free energy of DNA bending. Nucleic Acids Res. 33, 1257 (2005)

    Article  Google Scholar 

  68. I. Rouzina, V.A. Boomfield, DNA bending by small, mobile multivalent cations. Biophys. J. 74, 3152–3164 (1998)

    Article  ADS  Google Scholar 

  69. C.G. Baumann et al., Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U. S. A. 94(12), 6185–6190 (1997)

    Article  ADS  Google Scholar 

  70. C.G. Baumann et al., Stretching of single collapsed DNA molecules. Biophys. J. 78(4), 1965–1978 (2000)

    Article  ADS  Google Scholar 

  71. M.D. Wang, H. Ying, R. Landick, J. Gelles, S.M. Block, Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)

    Article  ADS  Google Scholar 

  72. J. Koh, R.M. Saecker, M.T. Record Jr., DNA binding mode transitions of Escherichia coli HU(alphabeta): evidence for formation of a bent DNA–protein complex on intact, linear duplex DNA. J. Mol. Biol. 383(2), 324–346 (2008)

    Article  Google Scholar 

  73. J. Yan, J.F. Marko, Effects of DNA-distorting proteins on DNA elastic response. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1 Pt 1), 011905 (2003)

    Article  ADS  Google Scholar 

  74. J. Yan, R. Kawamura, J.F. Marko, Statistics of loop formation along double helix DNAs. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061905 (2005)

    Article  Google Scholar 

  75. K.A. Vander Meulen, R.M. Saecker, M.T. Record Jr., Formation of a wrapped DNA–protein interface: experimental characterization and analysis of the large contributions of ions and water to the thermodynamics of binding IHF to H′ DNA. J. Mol. Biol. 377(1), 9–27 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Velmurugu, Y. (2017). Integration Host Factor (IHF)–DNA Interaction. In: Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45129-9_3

Download citation

Publish with us

Policies and ethics