Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 425 Accesses

Abstract

Laser-induced temperature jump relaxation spectroscopy has emerged as a very useful technique to probe the conformational dynamics of biomolecules (protein, DNA, RNA) and the dynamics of the interactions between them. The basic idea behind this approach is that the equilibrium of interconverting chemical species is suddenly perturbed with a temperature jump, forcing the system to establish a new equilibrium point at a higher temperature. The change in the populations of the interconverting species as they evolve in response to the T-jump perturbation can be monitored with a suitable spectroscopic probe attached to the biomolecule. This time-resolved spectroscopy enables us to follow the conformational dynamics of the biomolecules over an enormous time-window from few nanoseconds to several milliseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.F. Bernasconi, Relaxation Kinetics (Academic, New York, 1976)

    Google Scholar 

  2. H. Staerk, G. Czerlinski, Nanosecond heating of aqueous systems by giant laser pulses. Nature 205, 63–64 (1965)

    Article  ADS  Google Scholar 

  3. R. Rigler, A. Jost, L. De Maeyer, Chemical kinetics at micro level—a laser micro temperature jump apparatus for relaxation studies in micro samples. Exp. Cell Res. 62, 197–203 (1970)

    Article  Google Scholar 

  4. C.M. Phillips, Y. Mizutani, R.M. Hochstrasser, Ultrafast thermally-induced unfolding of RNAse-A. Proc. Natl. Acad. Sci. U. S. A. 92(16), 7292–7296 (1995)

    Article  ADS  Google Scholar 

  5. J. Kubelka, Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem. Photobiol. Sci. 8(4), 499–512 (2009)

    Article  Google Scholar 

  6. P.A. Thompson, W.A. Eaton, J. Hofrichter, Laser temperature jump study of the helix-coil kinetics of an alanine peptide interpreted with a ‘kinetic zipper’ model. Biochemistry 36(30), 9200–9210 (1997)

    Article  Google Scholar 

  7. W.O. Wray, T. Aida, R.B. Dyer, Photoacoustic cavitation and heat transfer effects in the laser-induced temperature jump in water. Appl. Phys. B 74, 57–66 (2002)

    Article  ADS  Google Scholar 

  8. A.K. Livesey, J.C. Brochon, Analyzing the Distribution of Decay Constants in Pulse-Fluorimetry Using the Maximum Entropy Method. Biophys. J. 52(5), 693–706 (1987)

    Article  Google Scholar 

  9. P.J. Steinbach, R. Ionescu, C.R. Matthews, Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding. Biophys. J. 82, 2244–2255 (2002)

    Article  Google Scholar 

  10. P.J. Steinbach, Inferring lifetime distributions from kinetics by maximizing entropy using a bootstrapped model. J. Chem. Inf. Comput. Sci. 42(6), 1476–1478 (2002)

    Article  Google Scholar 

  11. R.M. Clegg, Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992)

    Article  Google Scholar 

  12. L.E. Sass et al., Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 49(14), 3174–3190 (2010)

    Article  Google Scholar 

  13. K.-Y. Lin, R.J. Jones, M. Matteucci, Tricyclic-2′-deoxycytidine analogs:synthesis and incorporation into oligodeoxynudeotides which have enhanced binding to complementary RNA. J. Am. Chem. Soc. 117, 3873–3874 (1995)

    Article  Google Scholar 

  14. L.M. Wilhelmsson, Fluorescent nucleic acid base analogues. Q. Rev. Biophys. 43, 159–183 (2010)

    Article  Google Scholar 

  15. P. Sandin et al., Fluorescent properties of DNA base analogue tC upon incorporation into DNA—negligible influence of neighbouring bases on fluorescence quantum yield. Nucleic Acids Res. 33(16), 5019–5025 (2005)

    Article  ADS  Google Scholar 

  16. P. Sandin et al., Characterization and use of an unprecedentedly bright and structurally non-perturbing fluorescent DNA base analogue. Nucleic Acids Res. 36(1), 157–167 (2008)

    Article  Google Scholar 

  17. K. Borjesson et al., Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems. J. Am. Chem. Soc. 131(12), 4288–4293 (2009)

    Article  Google Scholar 

  18. K. Borjesson, P. Sandin, L.M. Wilhelmsson, Nucleic acid structure and sequence probing using fluorescent base analogue tCo. Biophys. Chem. 139, 24–28 (2009)

    Article  Google Scholar 

  19. A. Jones, R.K. Neely, 2-aminopurine as a fluorecent probe on DNA conformation and the DNA-enzyme interface. Q. Rev. Biophys. 48, 244–279 (2015)

    Article  Google Scholar 

  20. E. Rachofsky, R. Osman, J.B. Ross, Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence. Biochemistry 40, 946–956 (2001)

    Article  Google Scholar 

  21. N.O. Reich, B.W. Allan, Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry 35, 14757–14762 (1996)

    Article  Google Scholar 

  22. M.W. Frey, L.C. Sowers, D.P. Millar, S.J. Benkovic, The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Biochemistry 34, 9185–9192 (1995)

    Article  Google Scholar 

  23. D.J. Krosky, F.H. Song, J.T. Stivers, The origins of high-affinity enzyme binding to an extrahelical DNA base. Biochemistry 44, 5949–5959 (2005)

    Article  Google Scholar 

  24. R.K. Neely, D. Daujotyte, S. Grazuili, S.W. Magennis, D.T. Dryden, S. Klimasauskas, A.C. Jones, Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M.HhaI-DNA complexes. Nucleic Acids Res. 33, 6953–6960 (2005)

    Article  Google Scholar 

  25. E. Jacobs-Palmer, M.M. Hingorani, The effects of nucleotides on MutS-DNA binding kinetics clarify the role of MutS ATPase activity in mismatch repair. J. Mol. Biol. 366(4), 1087–1098 (2007)

    Article  Google Scholar 

  26. X. Chen et al., Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nat. Commun. 6, 5849 (2015)

    Article  ADS  Google Scholar 

  27. P. Vivas et al., Mapping the transition state for DNA bending by IHF. J. Mol. Biol. 418(5), 300–315 (2012)

    Article  Google Scholar 

  28. S.V. Kuznetsov et al., Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res. 36, 1098–1112 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Velmurugu, Y. (2017). Methods. In: Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45129-9_2

Download citation

Publish with us

Policies and ethics