Skip to main content

Impacts of Non-native Species on Livestock

  • Chapter
  • First Online:
Impact of Biological Invasions on Ecosystem Services

Part of the book series: Invading Nature - Springer Series in Invasion Ecology ((INNA,volume 12))

Abstract

Livestock systems have both benefited from and been harmed by the deliberate and unintended introduction of non-native species. The introduction of non-native pests and pathogens into livestock populations has resulted in severe economic, welfare, and public health consequences. These impacts include: competition for resources; livestock mortality and disease; costly eradication programmes; ongoing surveillance to ensure border and post-border biosecurity; and the burden of zoonotic pathogens on human health. In common with other systems, the impact of non-native invasions is determined by the ability of the pest or pathogen to enter the system (incursion), multiply and spread (expansion), and become established and endemic (persistence). The determinants of incursion, expansion, and persistence depend on the pest or pathogen and the livestock system invaded and include climate change, habitat encroachment, the effectiveness of border and post-border biosecurity, and the onset of acquired immunity in the host population. Examples of non-native invaders discussed in this chapter include vertebrate pests (e.g., mammals competing for resources), invertebrate pests (e.g., ectoparasites and vectors for microbial pathogens), and pathogens (e.g., viruses and bacteria). Advances in genome sequencing, and the development and application of models that combine epidemiology and evolution, offer new insights into invasion dynamics and new approaches to reducing the impacts of pests and pathogens on livestock populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nzherald.co.nz/waiheke-island/news/article.cfm?l_id=364&objectid=10127415

  2. 2.

    http://www.dpi.nsw.gov.au/agriculture/pests-weeds/vertebrate-pests/pest-animals-in-nsw/rabbit-control

References

  • Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, Oxford

    Google Scholar 

  • Atzeni MG, Mayer DG, Stuart MA (1997) Evaluating the risk of the establishment of screwworm fly in Australia. Aust Vet J 75:743–745

    Article  CAS  PubMed  Google Scholar 

  • Berriatua E, French NP, Broster CE et al (2001) Effect of infestation with Psoroptes ovis on the nocturnal rubbing and lying behaviour of housed sheep. Appl Anim Behav Sci 71:43–55

    Article  CAS  PubMed  Google Scholar 

  • Claes F, Morzaria SP, Donis RO (2016) Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses: how is the Asian HPAI H5 lineage maintained. Curr Opin Virol 16:158–163

    Article  PubMed  Google Scholar 

  • Coleman PG, Perry BD, Woolhouse ME (2001) Endemic stability: a veterinary idea applied to human public health. Lancet 357:1284–1286

    Article  CAS  PubMed  Google Scholar 

  • Driscoll DA, Catford JA, Barney JN et al (2014) New pasture plants intensify invasive species risk. Proc Natl Acad Sci U S A 111:16622–16627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand B, Zanella G, Biteau-Coroller F et al (2010) Anatomy of bluetongue virus serotype 8 epizootic wave, France, 2007–2008. Emerg Infect Dis 16:1861–1868

    Article  PubMed  PubMed Central  Google Scholar 

  • French NP, Berriatua E, Wall R et al (1999) Sheep scab outbreaks in Great Britain between 1973 and 1992: spatial and temporal patterns. Vet Parasitol 83:187–200

    Article  CAS  PubMed  Google Scholar 

  • French NP, Gemmell NJ, Buddle BM (2007) Advances in biosecurity to 2010 and beyond: towards integrated detection, analysis and response to exotic pest invasions. N Z Vet J 55:255–263

    Article  CAS  PubMed  Google Scholar 

  • Fruean S, East I (2014) Spatial analysis of targeted surveillance for screw-worm fly (Chrysomya bezziana or Cochliomyia hominivorax) in Australia. Aust Vet J 92:254–262

    Article  PubMed  Google Scholar 

  • Kanarek AR, Webb CT, Barfield M et al (2015) Overcoming allee effects through evolutionary, genetic, and demographic rescue. J Biol Dyn 9:15–33

    Article  PubMed  Google Scholar 

  • Keeling MJ, Woolhouse ME, May RM et al (2003) Modelling vaccination strategies against foot-and-mouth disease. Nature (Lond) 421:136–142

    Article  CAS  Google Scholar 

  • Konig GA, Cottam EM, Upadhyaya S et al (2009) Sequence data and evidence of possible airborne spread in the 2001 foot-and-mouth disease epidemic in the UK. Vet Rec 165:410–411

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Torchetti MK, Winker K et al (2015) Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J Virol 89:6521–6524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luby SP, Gurley ES (2012) Epidemiology of henipavirus disease in humans. Curr Top Microbiol Immunol 359:25–40

    PubMed  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale MW et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mader G, Castro L, Bonatto SL et al (2016) Multiple introductions and gene flow in subtropical South American populations of the fireweed, Senecio madagascariensis (Asteraceae). Genet Mol Biol 39:135–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Majowicz SE, Scallan E, Jones-Bitton A et al (2014) Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog Dis 11:447–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariner JC, House JA, Mebus CA et al (2012) Rinderpest eradication: appropriate technology and social innovations. Science 337:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Mather AE, Reid SW, Maskell DJ et al (2013) Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341:1514–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden AM, Rawdon TG, Meyer J et al (2011) An outbreak of haemolytic anaemia associated with infection of Theileria orientalis in naive cattle. N Z Vet J 59:79–85

    Article  CAS  PubMed  Google Scholar 

  • Morand S (2017) Infections and diseases in wildlife by non-native organisms. In: Vilà M, & Hulme PE (eds.) Impact of biological invasions on ecosystem services. Springer, Cham, pp 177–190

    Google Scholar 

  • Nugent G, Buddle B, Knowles G (2015) Epidemiology and control of Mycobacterium bovis infection in brushtail possums (Trichosurus vulpecula), the primary wildlife host of bovine tuberculosis in New Zealand. N Z Vet J 63:1–14

    Google Scholar 

  • Pulliam JR, Epstein JH, Dushoff J et al (2012) Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface 9:89–101

    Article  PubMed  Google Scholar 

  • Purse BV, Mellor PS, Rogers DJ et al (2005) Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171–181

    Article  CAS  PubMed  Google Scholar 

  • Rabitsch W, Essl F, Schindler S (2017) The rise of non-native vectors and reservoirs of human diseases. In: Vilà M, Hulme PE (eds.) Impact of biological invasions on ecosystem services. Springer, Cham, pp 263–275

    Google Scholar 

  • Robinson SE, Everett MG, Christley RM (2007) Recent network evolution increases the potential for large epidemics in the British cattle population. J R Soc Interface 4:669–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Vizcaino JM, Mur L, Gomez-Villamandos JC (2015) An update on the epidemiology and pathology of African swine fever. J Comp Pathol 152:9–21

    Article  CAS  PubMed  Google Scholar 

  • Strachan N, Rotariu O, Lopes B et al (2015) Whole genome sequencing demonstrates that geographic variation of Escherichia coli O157 genotypes dominates host association. Sci Rep 5:14145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson D, Muriel P, Russell D et al (2002) Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Rev Sci Tech 21:675–687

    CAS  PubMed  Google Scholar 

  • Wright CF, Knowles NJ, Di Nardo A et al (2013) Reconstructing the origin and transmission dynamics of the 1967–68 foot-and-mouth disease epidemic in the United Kingdom. Infect Genet Evol 20:230–238

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank P.E. Hulme and B. Buddle for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. French .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

French, N.P. (2017). Impacts of Non-native Species on Livestock. In: Vilà, M., Hulme, P. (eds) Impact of Biological Invasions on Ecosystem Services. Invading Nature - Springer Series in Invasion Ecology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-45121-3_9

Download citation

Publish with us

Policies and ethics