Skip to main content

Spike-Dip Transformation Method of Setaria viridis

  • Chapter
  • First Online:
Genetics and Genomics of Setaria

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 19))

Abstract

Conventional Agrobacterium-mediated transformation of monocots involves labor-intensive and time-consuming in vitro tissue culture methodology to regenerate T0 plants. To overcome these difficulties, a simple in planta Agrobacterium-mediated genetic transformation method for the emerging monocot model Setaria viridis was developed. Initial standardization of transient and stable transformations was performed using A. tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to transform preanthesis developing spikes. The method was further optimized by using A. tumefaciens strain EHA105 carrying β-glucuronidase plus (GUSplus), green fluorescent protein (GFP), and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or an intron-interrupted maize ubiquitin (Ubi) promoters to develop stable transgenic lines from S. viridis. Dipping of 5-day-old S3 spikes into Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025 % Silwet L-77 and 200 μM acetosyringone for 20 min produced stable transformants at the rate of 0.8 ± 0.1 %. Transgenic lines showed stable integration of transgenes into the genome, and inherited transgenes followed the Mendelian segregation pattern and were expressed in subsequent generations. This spike-dip method will facilitate high-throughput translational research in a monocot model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bastaki NK, Cullis CA. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate. J Vis Exp. 2014;94:1–10. doi:10.3791/52189.

    Google Scholar 

  • Bechtold N, Pelletier G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol. 1998;82:259–66.

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C-Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30(6):555–61. doi:10.1038/nbt.2196.

    Article  CAS  PubMed  Google Scholar 

  • Bent A. Arabidopsis thaliana floral dip transformation method. Methods Mol Biol. 2006;343:87–103. doi:10.1385/1-59745-130-4:87.

    CAS  PubMed  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22(8):2537–44. doi:10.1105/tpc.110.075309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J. A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels. 2010;3:1–10. doi:10.1186/1754-6834-3-9.

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43. doi:10.1046/j.1365-313x.1998.00343.x.

    Article  CAS  PubMed  Google Scholar 

  • Curtis I, Nam H. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res. 2001;10(4):363–71. doi:10.1023/A:1016600517293.

    Article  CAS  PubMed  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 2000;123(3):895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S. The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J. 2005;3(6):601–11. doi:10.1111/j.1467-7652.2005.00151.x.

    Article  CAS  PubMed  Google Scholar 

  • Eck J, Swartwood K. Setaria viridis. In: Wang K, editor. Agrobacterium protocols, vol. 1. New York: Springer; 2015. p. 57–67. doi:10.1007/978-1-4939-1695-5_5.

    Google Scholar 

  • Hamilton RH, Fall MZ. The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia. 1971;27(2):229–30.

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ishida Y, Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci. 2014;5:628. doi:10.3389/fpls.2014.00628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature. 1983;303(5913):179–80.

    Article  CAS  Google Scholar 

  • Hood E, Gelvin S, Melchers L, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993;2(4):208–18. doi:10.1007/BF01977351.

    Article  CAS  Google Scholar 

  • Jach G, Binot E, Frings S, Luxa K, Schell J. Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J. 2001;28(4):483–91. doi:10.1046/j.1365-313X.2001.01153.x.

    Article  CAS  PubMed  Google Scholar 

  • Kim H-Y, Saha P, Farcuh M, Li B, Sadka A, Blumwald E. RNA-seq analysis of spatiotemporal gene expression patterns during fruit development revealed reference genes for transcript normalization in plums. Plant Mol Biol Rep. 2015;33(6):1634–49. doi:10.1007/s11105-015-0860-3.

    Article  CAS  Google Scholar 

  • Koncz C, Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet. 1986;204(3):383–96. doi:10.1007/BF00331014.

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology. 1991;9(10):963–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee MW, Yang Y. Transient expression assay by agroinfiltration of leaves. Methods Mol Biol. 2006;323:225–9. doi:10.1385/1-59745-003-0:225.

    PubMed  Google Scholar 

  • Liu X, Brost J, Hutcheon C, Guilfoil R, Wilson A, Leung S, Shewmaker C, Rooke S, Nguyen T, Kiser J, De Rocher J. Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants. In Vitro Cell Dev Biol Plant. 2012;48(5):462–8. doi:10.1007/s11627-012-9459-7.

    Article  Google Scholar 

  • Martins PK, Nakayama TJ, Ribeiro AP, Cunha BADB, Nepomuceno AL, Harmon FG, Kobayashi AK, Molinari HBC. Setaria viridis floral-dip: a simple and rapid Agrobacterium-mediated transformation method. Biotechnol Rep. 2015a;6:61–3. doi:10.1016/j.btre.2015.02.006.

    Article  Google Scholar 

  • Martins PK, Ribeiro AP, Cunha BADB, Kobayashi AK, Molinari HBC. A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis. Biotechnol Rep. 2015b;6:41–4. doi:10.1016/j.btre.2015.02.002.

    Article  Google Scholar 

  • Mohanty A, Sarma NP, Tyagi AK. Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci. 1999;147(2):127–37. doi:10.1016/S0168-9452(99)00103-X.

    Article  CAS  Google Scholar 

  • Mu G, Chang N, Xiang K, Sheng Y, Zhang Z, Pan G. Genetic transformation of maize female inflorescence following floral dip method mediated by Agrobacterium. Biotechnology. 2012;11(3):178–83.

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Ray T, Dutta I, Saha P, Das S, Roy SC. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tiss Organ Cult. 2006;85(1):11–21. doi:10.1007/s11240-005-9044-4.

    Article  CAS  Google Scholar 

  • Sage RF, Zhu X-G. Exploiting the engine of C4 photosynthesis. J Exp Bot. 2011;62(9):2989–3000. doi:10.1093/jxb/err179.

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Blumwald E. Assessing reference genes for accurate transcript normalization using quantitative real-time PCR in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS One. 2014;9(8):e106308. doi:10.1371/journal.pone.0106308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha P, Blumwald E. Spike-dip transformation of Setaria viridis. Plant J. 2016;86(1):89–101. doi:10.1111/tpj.13148.

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Dasgupta I, Das S. A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol. 2006a;62(4–5):735–52. doi:10.1007/s11103-006-9054-6.

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S. Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta. 2006b;223(6):1329–43. doi:10.1007/s00425-005-0182-z.

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Chakraborti D, Sarkar A, Dutta I, Basu D, Das S. Characterization of vascular-specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta. 2007;226(2):429–42. doi:10.1007/s00425-007-0493-3.

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Ray T, Tang Y, Dutta I, Evangelous NR, Kieliszewski MJ, Chen Y, Cannon MC. Self-rescue of an EXTENSIN mutant reveals alternative gene expression programs and candidate proteins for new cell wall assembly in Arabidopsis. Plant J. 2013;75(1):104–16. doi:10.1111/tpj.12204.

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Sade N, Arzani A, Wilhelmi MMR, Coe KM, Li B, Blumwald E. Effects of abiotic stress on physiological plasticity and water use on Setaria viridis. Plant Sci. 2016;251:128–138. doi:org/10.1016/j.plantsci.2016.06.011

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.

    Article  CAS  PubMed  Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW. Green-fluorescent protein as a new vital marker in plant cells. Plant J. 1995;8(5):777–84. doi:10.1046/j.1365-313X.1995.08050777.x.

    Article  CAS  PubMed  Google Scholar 

  • Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H. Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol. 1992;100(3):1503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, Harrison MJ. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 2000;22(6):531–41. doi:10.1046/j.1365-313x.2000.00757.x.

    Article  CAS  PubMed  Google Scholar 

  • Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J. Characterization of different plaque-forming and defective temperate phages in Agrobacterium. J Gen Virol. 1975;26(1):33–48. doi:10.1099/0022-1317-26-1-33.

    Article  CAS  PubMed  Google Scholar 

  • Wang QM, Wang L. An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Rep. 2012;31(9):1535–47. doi:10.1007/s00299-012-1281-5.

    Article  CAS  PubMed  Google Scholar 

  • Wilmink A, Dons JJM. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep. 1993;11(2):165–85. doi:10.1007/BF02670474.

    Article  CAS  Google Scholar 

  • Wu H, Doherty A, Jones HD. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res. 2008;17(3):425–36. doi:10.1007/s11248-007-9116-9.

    Article  CAS  PubMed  Google Scholar 

  • Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudhry MF. In planta transformation of tomato. Plant Mol Biol Rep. 2009;27(1):20–8. doi:10.1007/s11105-008-0044-5.

    Article  CAS  Google Scholar 

  • Ye G-N, Stone D, Pang S-Z, Creely W, Gonzalez K, Hinchee M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 1999;19(3):249–57. doi:10.1046/j.1365-313X.1999.00520.x.

    Article  PubMed  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber CM. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep. 2009;28(6):903–13. doi:10.1007/s00299-009-0696-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Ellen Tumimbang, Dr. Hiromi Tajima, Elham Abed, and Kevin Abernathy for technical support. This work was funded by the United States Agency for International Development (USAID) to support the Feed the Future Innovation Lab for Climate-Resilient Millet under the Grant No. APS M/OAA/GRO/EGAS-11-002011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Blumwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saha, P., Blumwald, E. (2017). Spike-Dip Transformation Method of Setaria viridis . In: Doust, A., Diao, X. (eds) Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-45105-3_21

Download citation

Publish with us

Policies and ethics