Skip to main content

Agrobacterium tumefaciens-Mediated Transformation of Setaria viridis

  • Chapter
  • First Online:
Genetics and Genomics of Setaria

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 19))

Abstract

Gene transfer methodology, often referred to as transformation, is an important component of a model system research platform. Availability of transformation methods markedly expand the application of a model. We chose to develop an Agrobacterium tumefaciens-mediated gene transfer method for Setaria viridis A10.1. Regenerable callus was recovered from mature seeds without seed coats that were disinfected and cultured on a Murashige and Skoog-based medium supplemented with 40 g/L maltose, 2 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L kinetin, and 4 g/L Gelzan. The gelling agents Gelzan and Phytagel were found to be critical for recovery of a high quality callus as compared to agar that resulted in a gelatinous, brown, non-regenerable callus. For transformation, the callus was infected with the A. tumefaciens strain AGL1 that contained binary vectors with the hygromycin phosphotransferase selectable marker gene, which confers resistance to the antibiotic hygromycin. The transformation efficiency, which is defined as the percent of infected callus that gives rise to at least one independent transgenic line ranged from 0.3 to 15 % depending upon the vector backbone used to design constructs and the gene of interest that was either overexpressed or had a knockdown of expression. Transgenic lines were first verified by PCR, then positive plants were moved forward for copy number determination by either Southern or TaqMan® analysis. On average, 42 % of the transgenic lines contained one copy of the introduced transgene. Availability of a transformation methodology has contributed to the adoption of S. viridis as a model species by researchers worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22:2537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubner B, Baldwin IT. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep. 2004;23:263–71.

    Article  CAS  PubMed  Google Scholar 

  • Burris JN, Mann DGJ, Joyce BL, Stewart CN. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). Bioenerg Res. 2009;2:267–74.

    Article  Google Scholar 

  • Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003;133:462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev. 2003;67:16–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German MA, Kandel-Kfir M, Swarzberg D, Matsevitz T, Granot D. A rapid method for the analysis of zygosity in transgenic plants. Plant Sci. 2003;164:183–7.

    Article  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, Delong CMO. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol. 1993;21:17–26.

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general-method for transferring genes into plants. Science. 1985;227:1229–31.

    Article  CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques. 2001;31:132–40.

    CAS  PubMed  Google Scholar 

  • Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc. 2007;2:1614–21.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova M, Van Staden J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Organ Cult. 2011;104:13–21.

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T. Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tiss Organ Cult. 2004;77:181–91.

    Article  Google Scholar 

  • Lee SH, Lee DG, Woo HS, Lee BH. Development of transgenic tall fescue plants from mature seed-derived callus via Agrobacterium-mediated transformation. Asian Aust J Anim Sci. 2004;17:1390–4.

    Article  Google Scholar 

  • Li RY, Qu RD. High throughput Agrobacterium-mediated switchgrass transformation. Biomass Bioenerg. 2011;35:1046–54.

    Article  CAS  Google Scholar 

  • Mann DG, Lafayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA, Parrott WA, Stewart Jr NC. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J. 2012;10:226–36.

    Article  CAS  PubMed  Google Scholar 

  • McCabe MS, Power JB, de Laat AMM, Davey MR. Detection of single-copy genes in DNA from transgenic plants by nonradioactive Southern blot analysis. Mol Biotechnol. 1997;7:79–84.

    Article  CAS  PubMed  Google Scholar 

  • McCreery T. Digoxigenin labeling. Mol Biotechnol. 1997;7:121–4.

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.

    Article  CAS  Google Scholar 

  • Ozawa K. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Sci. 2009;176:522–7.

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I. Direct gene transfer to plants. EMBO J. 1984;3:2717–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel M, Dewey RE, Qu RD. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell Tiss Organ Cult. 2013;114:19–29.

    Article  CAS  Google Scholar 

  • Rao AM, Kishor PBK, Reddy LA, Vaidyanath K. Callus induction and high-frequency plant-regeneration in Italian millet (Setaria italica). Plant Cell Rep. 1988;7:557–9.

    Article  CAS  PubMed  Google Scholar 

  • Reddy LA, Vaidyanath K. Callus formation and regeneration in two induced mutants of foxtail millet (Setaria italica). J Genet Breed. 1990;44:133–8.

    Google Scholar 

  • Rout GR, Samantaray S, Das P. In vitro selection and characterization of Ni-tolerant callus lines of Setaria italica L. Acta Physiol Plant. 1998;20:269–75.

    Article  CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P. In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Sci. 1999;143:201–9.

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N. Delivery of substances into cells and tissues using a particle bombardment process. Particul Sci Technol. 1987;5:27–37.

    Article  CAS  Google Scholar 

  • Sebastian J, Wong MK, Tang E, Dinneny JR. Methods to promote gemination of dormant Setaria viridis seeds. PLoS ONE. 2014; 9:e95109.

    Google Scholar 

  • Song G, Walworth A, Hancock JF. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tiss Organ Cult. 2011;108:445–53.

    Article  Google Scholar 

  • Sood P, Bhattacharya A, Sood A. Problems and possibilities of monocot transformation. Biol Plant. 2011;55:1–15.

    Article  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM. The silence of genes in transgenic plants. Ann Bot. 1997;79:3–12.

    Article  CAS  Google Scholar 

  • Van Eck J, Swartwood K. Setaria viridis. In: Wang K, editor. Agrobacterium protocols, vol. 2. New York: Springer; 2015. p. 57–67.

    Google Scholar 

  • Vishnoi RK, Kothari SL. Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italica (L) Beauv. Cereal Res Commun. 1996;24:291–7.

    Google Scholar 

  • Vogel J, Hill T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 2008;27:471–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang MB, Li ZY, Matthews PR, Upadhyaya NM. Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Hortic. 1998;461:401–7.

    Article  CAS  Google Scholar 

  • Xu ZH, Wang DY, Yang LJ, Wei ZM. Somatic embryogenesis and plant-regeneration in cultured immature inflorescences of Setaria italica. Plant Cell Rep. 1984;3:149–50.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y, Ma X, Ding J, Wang K, Wang S, Tian Y, Zhang H, Zhu X-G. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research. Plant Mol Biol. 2013;83:77–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Erica Unger-Wallace for providing the Setaria viridis specific PCR primer sequences and also Christina Azodi for the initial efforts on development of the TaqMan® methods. We also acknowledge our funding sources, the Association of Independent Plant Research Institutes (AIPI) and the Triad Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Van Eck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Eck, J., Swartwood, K., Pidgeon, K., Maxson-Stein, K. (2017). Agrobacterium tumefaciens-Mediated Transformation of Setaria viridis . In: Doust, A., Diao, X. (eds) Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-45105-3_20

Download citation

Publish with us

Policies and ethics