Skip to main content

Cell Wall Development in an Elongating Internode of Setaria

  • Chapter
  • First Online:
  • 1230 Accesses

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 19))

Abstract

Although Setaria has been proposed as a model to investigate C4 photosynthesis, it may also be considered a suitable representative for biofuel feedstock species that are predominantly closely related panicoid grasses. In order to extend our understanding of the fundamental molecular and physiological mechanisms underpinning cell wall deposition as they occur during plant development, we have investigated an elongating stem internode of S. viridis. The chosen internode progressed from an active meristem and region of cell expansion at the base of the internode towards maturing fully expanded cells at the top of the internode. Along this developmental gradient, RNAseq of the mRNA fraction of the transcriptome was undertaken. A holistic understanding of the synthesis, composition and structure of the cell wall and the molecular mechanisms that signal the transition from primary to secondary cell wall synthesis will be integral to engineering crops with a structure that lends itself to more efficient deconstruction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu HS, Latorraca JVF, Pereira RPW, Monteiro MBO, Abreu FA, Amparado KF. A supramolecular proposal of lignin structure and its relation with the wood properties. An Acad Bras Cienc. 2009;81:137–42.

    Article  CAS  PubMed  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol. 2012;22:1207–12.

    Article  CAS  PubMed  Google Scholar 

  • Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol. 2009;50:1886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga K. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose. 2004;11:287–99.

    Article  CAS  Google Scholar 

  • Arioli T, Peng L, Betzner AS, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 1998;279:717–20.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Peled M, O’Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol. 2011;62:127–55.

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46.

    Article  CAS  PubMed  Google Scholar 

  • Boija E, Johansson G. Interactions between model membranes and lignin-related compounds studied by immobilized liposome chromatography. Biochim Biophys Acta Biomembr. 1758;2006:620–6.

    Google Scholar 

  • Bootten TJ, Harris PJ, Melton LD, Newman RH. Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. J Exp Bot. 2004;55:571–83.

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Mayer CD, Cookson A, Donnison IS. Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. J Exp Bot. 2011;62:3545–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22:2537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunzel M, Ralph J, Brüning P, Steinhart H. Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. J Agric Food Chem. 2006;54:6409–18.

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science. 2006;311:1940–2.

    Article  CAS  PubMed  Google Scholar 

  • Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997;326:929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita NC. Hemicellulosic polymers of cell walls of Zea coleoptiles. Plant Physiol. 1983;72:515–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita NC. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1 → 4)-β-D-Glycans. Plant Physiol. 2011;155:171–84.

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol. 2012;23:330–7.

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 2001;127:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casu RE, Jarmey JM, Bonnett GD, Manners JM. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics. 2007;7:153–67.

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem. 2013;72:1–20.

    Article  CAS  PubMed  Google Scholar 

  • Collins HM, Burton RA, Topping DL, Liao M-L, Bacic A, Fincher GB. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem. 2010;87:272–82.

    Article  CAS  Google Scholar 

  • Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–61.

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–52.

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira Buanafina MM. Feruloylation in grasses: current and future perspectives. Mol Plant. 2009;2:861–72.

    Article  Google Scholar 

  • de Oliveira Buanafina MM, Cosgrove DJ. Cell walls: structure and biogenesis. In: Sugarcane: physiology, biochemistry and functional biology. New York: Wiley; 2013. p. 307–329.

    Google Scholar 

  • Devos KM. Updating the “crop circle”. Curr Opin Plant Biol. 2005;8:155–62.

    Article  CAS  PubMed  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 2009;106:5996–6001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doblin MS, Pettolino F, Bacic A. Evans review : plant cell walls: the skeleton of the plant world. Funct Plant Biol. 2010;37:357–81.

    Article  CAS  Google Scholar 

  • Doering A, Lathe R, Persson S. An update on xylan synthesis. Mol Plant. 2012;5:769–71.

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, et al. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J. 2005;42:618–40.

    Article  CAS  PubMed  Google Scholar 

  • Emons AMC, Mulder BM. The making of the architecture of the plant cell wall: how cells exploit geometry. Proc Natl Acad Sci U S A. 1998;95:7215–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faik A. Xylan biosynthesis: news from the grass. Plant Physiol. 2010;153:396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A. 2011;108:1195–203.

    Article  Google Scholar 

  • Hansen SF, Harholt J, Oikawa A, Scheller HV. Plant glycosyltransferases beyond CAZy: a perspective on DUF families. Front Plant Sci. 2012;3:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol. 2014;49:212–41.

    Article  CAS  PubMed  Google Scholar 

  • Harholt J, Suttangkakul A, Scheller HV. Biosynthesis of pectin. Plant Physiol. 2010;153:384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield R, Vermerris W. Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 2001;126:1351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Terashima N. Formation and structure of lignin in monocotyledons IV. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforsch Int J Biol Chem Phys Technol Wood. 1991;45:191.

    CAS  Google Scholar 

  • Hill JL, Hammudi MB, Tien M. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell. 2014;26:4834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Survey of genes involved in rice secondary cell wall formation through a co-expression network. Plant Cell Physiol. 2013;54:1803–21.

    Article  CAS  PubMed  Google Scholar 

  • Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C. New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem. 1995;43:2746–51.

    Article  CAS  Google Scholar 

  • Kaneda M, Rensing KH, Wong JCT, Banno B, Mansfield SD, Samuels AL. Tracking monolignols during wood development in Lodgepole pine. Plant Physiol. 2008;147:1750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC transporters. Arabidopsis Book. 2011;9:e0153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J-B, Olek AT, Carpita NC. Cell wall and membrane-associated Exo-β-d-glucanases from developing maize seedlings. Plant Physiol. 2000;123:471–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. Plant Cell. 1999;11:2075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokubo A, Sakurai N, Kuraishi S, Takeda K. Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol. 1991;97:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutaniemi S. Lignin biosynthesis in Norway spruce: from a model system to the tree. 2007. Ph.D. thesis, University of Helsinki.

    Google Scholar 

  • Larkin P. Infrared and Raman spectroscopy; principles and spectral interpretation. 1st ed.; 2011. ISBN 9780123869845.

    Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Phytochemistry: advances in research. Kerala, India: Research Signpost; 2006. p. 23–45.

    Google Scholar 

  • Li X, Weng JK, Chapple C. Improvement of biomass through lignin modification. Plant J. 2008;54:569–81.

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant. 2012;5:304–17.

    Article  CAS  PubMed  Google Scholar 

  • Martin AP, Palmer WM, Byrt CS, Furbank RT, Grof CP. A holistic high-throughput screening framework for biofuel feedstock assessment that characterises variations in soluble sugars and cell wall composition in Sorghum bicolor. Biotechnol Biofuels. 2013;6:186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin AP, Palmer WM, Brown C, Abel C, Lunn JE, Furbank RT, Grof CPL. A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species. Biotechnol Biofuels. 2016;9:45.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCann MC, Carpita NC. Designing the deconstruction of plant cell walls. Curr Opin Plant Biol. 2008;11:314–20.

    Article  CAS  PubMed  Google Scholar 

  • McFarlane HE, Döring A, Persson S. The cell biology of cellulose synthesis. Annu Rev Plant Biol. 2014;65:69–94.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RA, Dupree P, Shewry PR. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol. 2007;144:43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa H, Senda M. Infrared analysis of oat coleoptile cell walls and oriented structure of matrix polysaccharides in the walls. Plant Cell Physiol. 1978;19:327–36.

    CAS  Google Scholar 

  • Mortimer JC, Miles GP, Brown DM, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci U S A. 2010;107:17409–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouille G, Robin S, Lecomte M, Pagant S, Hofte H. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J. 2003;35:393–404.

    Article  CAS  PubMed  Google Scholar 

  • Mutwil M, Debolt S, Persson S. Cellulose synthesis: a complex complex. Curr Opin Plant Biol. 2008;11:252–7.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol. 2008;179:738–50.

    Article  CAS  PubMed  Google Scholar 

  • Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S. AFM observation of ultrathin microfibrils in fruit tissues. Cellulose. 2010;17:13–8.

    Article  CAS  Google Scholar 

  • Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. Plant Physiol. 2015;168:3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parameswaran N, Liese W. On the fine structure of bamboo fibres. Wood Sci Technol. 1976;10:231–46.

    CAS  Google Scholar 

  • Park YB, Cosgrove DJ. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol. 2012;158:1933–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YB, Cosgrove DJ. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 2015;56:180–94.

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.

    Article  CAS  PubMed  Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G. Hemicellulose biosynthesis. Planta. 2013;238:627–42.

    Article  CAS  PubMed  Google Scholar 

  • Penning BW, Hunter CT, Tayengwa R, et al. Genetic resources for maize cell wall biology. Plant Physiol. 2009;151:1703–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD. Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res. 1995;275:167–78.

    Article  CAS  Google Scholar 

  • Rennie EA, Scheller HV. Xylan biosynthesis. Curr Opin Biotechnol. 2014;26:100–7.

    Article  CAS  PubMed  Google Scholar 

  • Richmond T. Higher plant cellulose synthases. Genome Biol. 2000;1:reviews 3001.1–3001.6.

    Article  Google Scholar 

  • Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol. 2000;124:495–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha J, Sengupta A, Gupta K, Gupta B. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput Biol Chem. 2015;54:18–32.

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Funnell-Harris DL. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front Plant Sci. 2013;4:70. doi:10.3389/fpls.2013.00070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.

    Article  CAS  PubMed  Google Scholar 

  • Sibout R, Höfte H. Plant cell biology: the ABC of monolignol transport. Curr Biol. 2012;22:533–5.

    Article  Google Scholar 

  • Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W, Carpita NC, Johal G. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol. 2007;145:1444–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003;133:73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NG. Cellulose biosynthesis and deposition in higher plants. New Phytol. 2008;178:239–52.

    Article  CAS  PubMed  Google Scholar 

  • Torres AF, Visser RGF, Trindade LM. Bioethanol from maize cell walls: genes, molecular tools, and breeding prospects. GCB Bioenerg. 2015;7:591–607.

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 2008;11:301–7.

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson CG, Mansfield SD, Lu F, et al. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science. 2014;344:90–3.

    Article  CAS  PubMed  Google Scholar 

  • Wilson SM, Ho YY, Lampugnani ER, Van de Meene AML, Bain MP, Bacic A, Doblin MS. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-Glucan in grasses. Plant Cell. 2015;27:754–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Li Y, Ma X, Ding J, Wang K, Wang S, Tian Y, Zhang H, Zhu XG. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research. Plant Mol Biol. 2013;83:77–87.

    Article  CAS  PubMed  Google Scholar 

  • York WS, O’Neill MA. Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol. 2008;11:258–65.

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Jiang N, Nadella R, Killen TL, Nadella V, Faik A. A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol. 2010;154:78–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QS, Cheetamun R, Dhugga KS, et al. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biol. 2014;14:27–46. doi:10.1186/1471-2229-14-27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Ye Z-H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 2015;56:195–214.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. L. Grof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martin, A.P. et al. (2017). Cell Wall Development in an Elongating Internode of Setaria . In: Doust, A., Diao, X. (eds) Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-45105-3_13

Download citation

Publish with us

Policies and ethics