Skip to main content

Flip-Chip Underfill: Materials, Process, and Reliability

  • Chapter
  • First Online:
Materials for Advanced Packaging

Abstract

In order to enhance the reliability of a flip-chip on organic board package, underfill is usually used to redistribute the thermo-mechanical stress created by the Coefficient of Thermal Expansion (CTE) mismatch between the silicon chip and organic substrate. However, the conventional underfill relies on the capillary flow of the underfill material and has many disadvantages. In order to overcome these disadvantages, many variations have been invented to improve the flip-chip underfill process. This chapter reviews the recent advances in the material design, process development, and reliability issues of flip-chip underfill, especially in no-flow underfill, molded underfill, and wafer-level underfill. The relationship between the materials, process, and reliability in these packages is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong CP, Lou S, Zhang Z (2000) Flip the chip. Science 290:2269

    Article  Google Scholar 

  2. Davis E, Harding W, Schwartz R, Coring J (1964) Solid logic technology: versatile high performance microelectronics. IBM J Res Dev 8:102

    Article  Google Scholar 

  3. Nakano F, Soga T, Amagi S (1987) Resin-insertion effect on thermal cycle resistivity of flip-chip mounted LSI devices. In: Proceedings of the international society of hybrid microelectronics conference, p 536

    Google Scholar 

  4. Tsukada Y (1992) Surface laminar circuit and flip-chip attach packaging. In: Proceedings of the 42nd electronic components and technology conference, p 22

    Google Scholar 

  5. Han B, Guo Y (1995) Thermal deformation analysis of various electronic packaging products by moire and microscope moire interferometry. J Electron Packag 117:185

    Article  Google Scholar 

  6. Han S, Wang KK (1997) Analysis of the flow of encapsulant during underfill encapsulation of flip-chips. IEEE Trans Compon Packag Manuf Technol Part B 20(4):424–433

    Article  Google Scholar 

  7. Han S, Wang KK, Cho SY (1996) Experimental and analytical study on the flow of encapsulant during underfill encapsulation of flip-chips. In: Proceedings of the 46th electronic components and technology conference, pp 327–334

    Google Scholar 

  8. Nguyen L, Quentin C, Fine P, Cobb B, Bayyuk S, Yang H, Bidstrup-Allen SA (1999) Underfill of flip chip on laminates: simulation and validation. IEEE Trans Compon Packag Technol 22(2):168–176

    Article  Google Scholar 

  9. Young WB, Yang WL (2006) Underfill of flip-chip: the effect of contact angle and solder bump arrangement. IEEE Trans Adv Packag 29(3):647–653

    Article  Google Scholar 

  10. Lewis A, Babiarz A, Ness CQ (1998) Solving liquid encapsulation problem in IC packages. Electronics Engineer

    Google Scholar 

  11. Bressers H, Beris P, Caers J, Wondergerm J (1996) Influence of chemistry and processing of flip chip underfills on reliability. In: Proceedings of 2nd international conference on adhesive joining and coating technology in electronics manufacturing, Stockholm, Sweden

    Google Scholar 

  12. Nysaether JB, Lundstrom P, Liu J (1998) Measurements of solder bump lifetime as a function of underfill material properties. IEEE Trans Compon Packag Manuf Technol Part A 21(2):281–287

    Article  Google Scholar 

  13. Dudek R, Schubert A, Michel B (2000) Analyses of flip chip attach reliability. In: Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, pp 77–85

    Google Scholar 

  14. Palaniappan P, Selman P, Baldwin D, Wu J, Wong CP (1998) Correlation of flip chip underfill process parameters and material properties with in-process stress generation. In: Proceedings of the 48th electronic components and technology conference, pp 838–847

    Google Scholar 

  15. Mercado L, Sarihan V (2003) Evaluation of die edge cracking in flip-chip PBGA packages. IEEE Trans Compon Packag Technol 26(4):719–723

    Article  Google Scholar 

  16. Lahoti SP, Kallolimath SC, Zhou J (2005) Finite element analysis of thermo-hygro-mechanical failure of a flip chip package. In: Proceedings of IEEE 6th international conference on electronic packaging technology, Shenzhen

    Google Scholar 

  17. Luo S, Wong CP (2000) Effect of coupling agents on underfill material in flip chip packaging. In: Proceedings of 2000 international symposium on advanced packaging materials, Braselton, pp 183–188

    Google Scholar 

  18. Chen T, Wang J, Lu D (2004) Emerging challenges of underfill for flip chip application. In: Proceedings of the 54th electronic components and technology conference, pp 175–179

    Google Scholar 

  19. Hwang JS (2000) Lead-free solder: the Sn/Ag/Cu system. Surf Mount Technol 18: 30

    Google Scholar 

  20. Huang B, Lee NC (1999) Prospect of lead free alternatives for reflow soldering. In: Proceedings of SPIE—the international society for optical engineering, vol 3906, p 771

    Google Scholar 

  21. Butterfield A, Visintainer V, Goudarzi V (2000) Lead-free solder paste flux evaluation and implementation in personal communication devices. In: Proceedings of the 50th electronic components and technology conference, p 1420

    Google Scholar 

  22. Mahalingam S, Goray K, Joshi A (2004) Design of underfill materials for lead free flip chip application. In: Proceedings of 2004 I.E. international society conference on thermal phenomena, pp 473–479

    Google Scholar 

  23. Chee CK, Chin YT, Sterrett T, He Y, HP Sow, Manepali R, Chandran D (2002) Lead-free compatible underfill materials for flip chip application. In: Proceedings of the 52nd electronic components and technology conference, pp 417–424

    Google Scholar 

  24. Tsao P, Huang C, Li M, Su B, Tsai N (2004) Underfill characterization for low-k dielectric/Cu interconnect IC flip-chip package reliability. In: Proceedings of the 54th IEEE electronic components and technology conference, p 767–769

    Google Scholar 

  25. Rajagopalan S, Desai K, Todd M, Carson G (2004) Underfill for low-K silicon technology. In: Proceedings of 2004 IEEE/SEMI international electronics manufacturing technology symposium

    Google Scholar 

  26. Pennisi R, Papageorge M (1992) Adhesive and encapsulant material with fluxing properties. US Patent 5,128,746, 7 July 1992

    Google Scholar 

  27. Wong CP, Baldwin D (1996) No-flow underfill for flip-chip packages. US Patent Disclosure, April 1996

    Google Scholar 

  28. Wong CP, Shi SH (2001) No-flow underfill of epoxy resin, anhydride, fluxing agent and surfactant. US Patent 6,180,696, 30 Jan 2001

    Google Scholar 

  29. Wong CP, Shi SH, Jefferson G () High Performance No Flow Underfills for Low-Cost Flip-Chip Applications. In: Proceedings of the 47th Electronic Components and Technology Conference, p. 850, 1997.

    Google Scholar 

  30. Wong CP, Shi SH, Jefferson G (1998) High performance no-flow underfills for flip-chip applications: material characterization. IEEE Trans Compon Packag Manuf Technol Part A Packag Technol 21(3):450–458

    Article  Google Scholar 

  31. Zhang Z, Shi SH, Wong CP (2000) Development of no-flow underfill materials for lead-free bumped flip-chip applications. IEEE Trans Compon Packag Technol 24(1):59–66

    Article  Google Scholar 

  32. Zhang Z, Wong CP (2000) Development of no-flow underfill for lead-free bumped flip-chip assemblies. In: Proceedings of electronics packaging technology conference, Singapore, pp 234–240

    Google Scholar 

  33. Zhang Z, Wong CP (2002) Study and modeling of the curing behavior of no-flow underfill. In: Proceedings of the 8th international symposium and exhibition on advanced packaging materials processes, properties and interfaces, Stone Mountain, pp 194–200

    Google Scholar 

  34. Morganelli P, Wheelock B (2001) Viscosity of a no-flow underfill during reflow and its relationship to solder wetting. In: Proceedings of the 51st electronic components and technology conference, pp 163–166

    Google Scholar 

  35. Johnson RW, Capote MA, Chu S, Zhou L, Gao B (1998) Reflow-curable polymer fluxes for flip chip encapsulation. In: Proceedings of international conference on multichip modules and high density packaging, pp 41–46

    Google Scholar 

  36. Shi SH, Wong CP (1998) Study of the fluxing agent effects on the properties of no-flow underfill materials for flip-chip applications. In: Proceedings of the 48th electronic components and technology conference, p 117

    Google Scholar 

  37. Shi SH, Lu D, Wong CP (1999) Study on the relationship between the surface composition of copper pads and no-flow underfill fluxing capability. In: Proceedings of the 5th international symposium on advanced packaging materials: processes, properties and interfaces, p 325

    Google Scholar 

  38. Shi SH, Wong CP (1999) Study of the fluxing agent effects on the properties of no-flow underfill materials for flip-chip applications. IEEE Trans Compon Packag Technol Part A Packag Technol 22(2):141

    Article  Google Scholar 

  39. Palm P, Puhakka K, Maattanen J, Heimonen T, Tuominen A (2000) Applicability of no-flow fluxing encapsulants and flip chip technology in volume production. In: Proceedings of the 4th international conference on adhesive joining and coating technology in electronics manufacturing, pp 163–167

    Google Scholar 

  40. Puhakka K, Kivilahti JK (1998) High density Flip chip interconnections produced with in-situ underfills and compatible solder coatings. In: Proceedings of the 3rd international conference on adhesives joining and coating technology in electronics manufacturing, pp 96–100

    Google Scholar 

  41. Wang T, Chew TH, Chew YX, Louis Foo (2001) Reliability studies of flip chip package with reflowable underfill. In: Proceedings of the pan pacific microelectronic symposium, Kauai, Hawaii, pp 65–70

    Google Scholar 

  42. Zhang Z, Wong CP (2002) Assembly of lead-free bumped flip-chip with no-flow underfills. IEEE Trans Electron Packag Manuf 25(2):113–119

    Article  Google Scholar 

  43. Miller D, Baldwin DF (2001) Effects of substrate design on underfill voiding using the low cost, high throughput flip chip assembly process. In: Proceedings of the 7th international symposium on advanced packaging materials: processes, properties and interfaces, pp 51–56

    Google Scholar 

  44. Zhao R, Johnson RW, Jones G, Yaeger E, Konarski M, Krug P, Crane L (2002) Processing of fluxing underfills for flip chip-on-laminate assembly. Presented at IPC SMEMA council APEX 2002, proceeding of APEX, San Diego, pp S18-1-1–S18-1-7

    Google Scholar 

  45. Wang T, Lum C, Kee J, Chew TH, Miao P, Foo L, Lin C (2000) Studies on a reflowable underfill for flip chip application. In: Proceedings of the 50th electronic components and technology conference, pp 323–329

    Google Scholar 

  46. Gamota D, Melton CM (1997) The development of reflowable materials systems to integrate the reflow and underfill dispensing processes for DCA/FCOB assembly. IEEE Trans Compon Packag Technol Part C 20(3):183

    Article  Google Scholar 

  47. Dai X, Brillhart MV, Roesch M, Ho PS (2000) Adhesion and toughening mechanisms at underfill interfaces for flip-chip-on-organic-substrate packaging. IEEE Trans Compon Packag Technol 23(1):117–127

    Article  Google Scholar 

  48. Smith BS, Thorpe R, Baldwin DF (2000) A reliability and failure mode analysis of no flow underfill materials for low cost flip chip assembly. In: Proceedings of 50th electronic components and technology conference, Las Vegas, pp 1719–1730

    Google Scholar 

  49. Moon KS, Fan L, Wong CP (2001) Study on the effect of toughening of no-flow underfill on fillet cracking. In: Proceedings of the 51st electronic components and technology conference, pp167–173

    Google Scholar 

  50. Wang H, Tomaso T (2000) Novel single pass reflow encapsulant for flip chip application. In: Proceedings of the 6th international symposium on advanced packaging materials: process, properties, and interfaces, pp 97–101

    Google Scholar 

  51. Zhang Z, Fan L, Wong CP (2002) Development of environmental friendly non-anhydride no-flow underfills. IEEE Trans Compon Packag Technol 25(1):140–147

    Article  Google Scholar 

  52. Shi SH, Yao Q, Qu J, Wong CP (2000) Study on the correlation of flip-chip reliability with mechanical properties of no-flow underfill materials. In: Proceedings of the 6th international symposium on advanced packaging materials: processes, properties and interfaces, pp 271–277

    Google Scholar 

  53. Shi SH, Wong CP (1999) Recent advances in the development of no-flow underfill encapsulants—a practical approach towards the actual manufacturing application. In: Proceedings of the 49th electronic components and technology conference, pp 331–339

    Google Scholar 

  54. Miao P, Chew Y, Wang T, Foo L (2001) Flip-chip assembly development via modified reflowable underfill process. In: Proceedings of the 51st electronic components and technology conference, pp 174–180

    Google Scholar 

  55. Kawamoto S, Suzuki O, Abe Y (2006) The effect of filler on the solder connection for no-flow underfill. In: Proceedings of the 56th electronic components and technology conference, pp 479–484

    Google Scholar 

  56. Zhang Z, Lu J, Wong CP (2001) A novel process approach to incorporate silica filler into no-flow underfill. Provisional Patent 60/288,246, 5 Feb 2001

    Google Scholar 

  57. Zhang Z, Lu J, Wong CP (2001) A novel approach for incorporating silica fillers into no-flow underfill. In: Proceedings of the 51st electronic components and technology conference, pp 310–316

    Google Scholar 

  58. Zhang Z, Wong CP (2002) Novel filled no-flow underfill materials and process. In: Proceedings of the 8th international symposium and exhibition on advanced packaging materials processes, properties and interfaces, pp 201–209

    Google Scholar 

  59. Gross KM, Hackett S, Larkey DG, Scheultz MJ, Thompson W (2002) New materials for high performance no-flow underfill. In: Symposium proceedings of IMAPS 2002, Denver

    Google Scholar 

  60. Gross K, Hackett S, Schultz W, Thompson W, Zhang Z, Fan L, Wong CP (2003) Nanocomposite underfills for flip chip application. In: Proceedings of the 53rd electronic components and technology conference, pp 951–956

    Google Scholar 

  61. Sun Y, Zhang Z, Wong CP (2004) Fundamental research on surface modification of nano-size silica for underfill applications. In: Proceedings of the 54th electronic components and technology conference, pp 754–760

    Google Scholar 

  62. Joshi M, Pendse R, Pandey V, Lee TK, Yoon IS, Yun JS, Kim YC, Lee HR (2010) molded underfill (MUF) technology for flip chip packages in mobile application. In: Proceedings of the 59rd electronic components and technology conference, pp 1250–1257

    Google Scholar 

  63. Yen F, Huang L, Kao N, Jiang DS (2014) Moldflow simulation study on void risk prediction for FCCSP with molded underfill technology. In: Proceeding of the IEEE 16th Electronics packaging technology conference EPTC, pp 817–821

    Google Scholar 

  64. Weber PO (2000) Chip package with molded underfill. US Patent 6,038,136, 14 Mar 2000

    Google Scholar 

  65. Weber PO (2000) Chip package with transfer mold underfill. US Patent 6, 157,086, 5 Dec 2000

    Google Scholar 

  66. Gilleo K, Cotterman B, Chen T (2000) Molded underfill for flip chip in package. High density interconnection, p 28

    Google Scholar 

  67. Braun T, Becker KF, Koch M, Bader V, Aschenbrenner R, Reichl H (2002) Flip chip molding—recent progress in flip chip encapsulation. In: Proceedings of 8th international advanced packaging materials symposium, pp 151–159

    Google Scholar 

  68. Liu F, Wang YP, Chai K, Her TD (2001) Characterization of molded underfill material for flip chip ball grid array packages. In: Proceedings of the 51st electronic components and technology conference, pp 288–292

    Google Scholar 

  69. Rector LP, Gong S, Miles TR, Gaffney K (2000) Transfer molding encapsulation of flip chip array packages. In: IMAPS proceedings, pp 760–766

    Google Scholar 

  70. Han S, Wang KK (1999) Study on the pressurized underfill encapsulation of flip chips. IEEE Trans Compon Packag Manuf Technol Part B AdvPackag 20(4):434–442

    Google Scholar 

  71. Rector LP, Gong S, Gaffney K (2001) On the performance of epoxy molding compounds for flip chip transfer molding encapsulation. In: Proceedings of the 51st electronic components and technology conference, pp 293–297

    Google Scholar 

  72. Becker KF, Braun T, Koch M, Ansorge F, Aschenbrenner R, Reichl H (2001) Advanced flip chip encapsulation: transfer molding process for simultaneous underfilling and post encapsulation. In: Proceedings of the 1st international IEEE conference on polymers and adhesives in microelectronics and photonics, pp 130–139

    Google Scholar 

  73. Shi SH, Yamashita T, Wong CP (1999) Development of the wafer-level compressive-flow underfill process and its required materials. In: Proceedings of the 49th electronic components and technology conference, pp 961–966

    Google Scholar 

  74. Shi SH, Yamashita T, Wong CP (1999) Development of the wafer-level compressive-flow underfill encapsulant. In: Proceedings of the 5th international symposium on advanced packaging materials: processes, properties and interfaces, pp 337–343

    Google Scholar 

  75. Gilleo K, Blumel D (1999) Transforming flip chip into CSP with reworkable wafer-level underfill. In: Proceedings of the pan pacific microelectronics symposium, p 159

    Google Scholar 

  76. Gilleo K (1999) Flip chip with integrated flux, mask and underfill. WO Patent 99/56312, 4 Nov 1999

    Google Scholar 

  77. Qi J, Kulkarni P, Yala N, Danvir J, Chason M, Johnson RW, Zhao R, Crane L, Konarski M, Yaeger E, Torres A, Tishkoff R, Krug P (2002) Assembly of flip chips utilizing wafer applied underfill. Presented at IPC SMEMA council APEX 2002, proceedings of APEX, San Diego, pp S18-3-1–S18-3-7

    Google Scholar 

  78. Tong Q, Ma B, Zhang E, Savoca A, Nguyen L, Quentin C, Lou S, Li H, Fan L, Wong CP (2000) Recent advances on a wafer-level flip chip packaging process. In: Proceedings of the 50th electronic components and technology conference, pp 101–106

    Google Scholar 

  79. Charles S, Kropp M, Kinney R, Hackett S, Zenner R, Li FB, Mader R, Hogerton P, Chaudhuri A, Stepniak F, Walsh M (2001) Pre-applied underfill adhesives for flip chip attachment. In: IMAPS proceedings, international symposium on microelectronics, Baltimore, pp 178–183

    Google Scholar 

  80. Zhang Z, Sun Y, Fan L, Wong CP (2004) Study on B-stage properties of wafer level underfill. J Adhes Sci Technol 18(3):361–380

    Article  Google Scholar 

  81. Zhang Z, Sun Y, Fan L, Doraiswami R, Wong CP (2003) Development of wafer level underfill material and process. In: Proceedings of 5th electronic packaging technology conference, Singapore, pp 194–198

    Google Scholar 

  82. Zenner RLD, Carpenter BS (2002) Wafer-applied underfill film laminating. In: Proceedings of the 8th international symposium on advanced packaging materials, pp 317–325

    Google Scholar 

  83. Burress RV, Capote MA, Lee Y-J, Lenos HA, Zamora JF (2001) A practical, flip-chip multi-layer pre-encapsulation technology for wafer-scale underfill. In: Proceedings of the 51st electronic components and technology conference, pp 777–781

    Google Scholar 

  84. Sun Y, Zhang Z, Wong CP (2005) Photo-definable nanocomposite for wafer level packaging. In: Proceedings of the 55th electronic components and technology conference, pp 179–184

    Google Scholar 

  85. Chung CK, Paik KW (2007) Non-conductive films (NCFs) with multi-functional epoxies and silica fillers for reliable NCFs flip chip on organic boards (FCOB). In: Proceedings of the 57st electronic components and technology conference, pp 1831–1838

    Google Scholar 

  86. Nonaka T, Fujimsru K, Asahi N, Kasumi K, Matsumoto Y (2008) Development of wafer level NCF (non conductive film). In: Proceedings of the 58st electronic components and technology conference, pp 1550–1555

    Google Scholar 

  87. Rebibis KJ, Gerets C, Capuz G, Daily R, Wang T, LaManna A, Duval F, Miller A, Guino R, Peddi R, Beyne E, Swinnen B (2012) Wafer applied and no flow underfill screening for 3D stacks. In: Proceedings of IEEE 14th electronics packaging technology conference, pp 189–196

    Google Scholar 

  88. Kao KS, Cheng RS, Zhan CJ, Chang JY, Yang TF, Huang SY, Fan CW, Chen SM, Chung SC, Lu YL, Wu ML, Chen TH (2012) Assembly and reliability assessment of 50 μm-thick chip stacking by wafer-level underfill film. In: Proceedings of 7th international microsystems, packaging, assembly and circuits technology conference, pp 307–310

    Google Scholar 

  89. Huang YW, Fan CW, Lin YM, Fun SY, Chung SC, Juang JY, Cheng RS, Huang SY, Chang TC, Zhan CJ (2015) Development of high throughput adhesive bonding scheme by wafer-level underfill for 3D die to- interposer stacking with 30 μm-pitch micro interconnections. In: Proceedings of the 65th electronic components and technology conference, pp 175–179

    Google Scholar 

  90. Sakuma K, Kohara S, Sueoka K, Orill Y, Kawakami M, Asai K, Hirayama Y, Knickerbocker JU (2011) Development of vacuum underfill technology for a 3D chip stack. J Micromech Microeng 21(3): 035024

    Google Scholar 

  91. Le FL, Lee SWR, Lau KM, Yue CP, Sin JKO, Mok PKT, Ki WH, Choi HW (2014) Through silicon underfill dispensing for 3D die/interposer stacking. In: Proceedings of the 64th electronic components and technology conference, pp 175–179

    Google Scholar 

  92. http://polymerinnovationblog.com/polymer-challenges-electronic-packaging-part-4-wafer-level-underfills/

  93. Fine P, Cobb B, Nguyen L (2000) Flip chip underfill flow characteristics and prediction. IEEE Trans Compon Packag Technol 23:420–427

    Article  Google Scholar 

  94. Wang J, Chen T (2004) The effect of flow properties on fillers settling of underfill in the flip chip package. In: Proceeding of the 54th electronic components and technology conference, pp 761–766

    Google Scholar 

  95. Liu YL, Hsu CY, Wei WL, Jeng RJ (2003) Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44:5159–5167

    Article  Google Scholar 

  96. Rubinsztajn S, Buckley D, Campbell J, Esler D, Fiveland E, Prabhakumar A, Sherman D (2005) Development of novel filler technology for no-flow and wafer level underfill materials. J Electron Packag 127:77–85

    Article  Google Scholar 

  97. Sun YY, Zhang ZQ, Wong CP (2006) Study and characterization on the nanocomposite underfill for flip chip applications. IEEE Trans Compon Packag Technol 29:190–197

    Article  Google Scholar 

  98. Sun Y, Zhang Z, Wong CP (2005) Study on mono-dispersed nano-size silica by surface modification for underfill applications. J Colloid Interface Sci 292:436–444

    Article  Google Scholar 

  99. Lall P, Islam S, Tian GY, Suhling JC (2008) Nano-underfills for high-reliability applications in extreme environments. IEEE Trans Compon Packag Technol 31(1):114–125

    Article  Google Scholar 

  100. Lam CK, Lee C (2003) Assembly and reliability performance of flip chip with no-flow underfills. In: Proceeding of the 53th electronics packaging technology conference, pp 336–341

    Google Scholar 

  101. Shi SH, Wong CP (1999) Recent advances in the development of no-flow underfill encapsulants—a practical approach towards the actual manufacturing application. IEEE Transactions on Electronics Packaging Manufacturing 22:331–339

    Article  Google Scholar 

  102. Gross K, Hackett S, Schultz W, Thompson W (2003) Nanocomposite underfills for flip-chip applications. In: Proceeding of the 53th electronic components and technology conference, pp 951–956

    Google Scholar 

  103. Johnson RW, Wang Q, Ding F, Hou Z, Crane L, Tang H, Shi G, Zhao R, Danvir J, Qi J (2004) Wafer-applied underfill: flip-chip assembly and reliability. IEEE Transactions on Electronics Packaging Manufacturing 27:101–108

    Article  Google Scholar 

  104. Liu M, Yin WS (2013) A novel high thermal conductive underfill for flp-chip application. YINCAE Advanced Materials LLC, Albany

    Google Scholar 

  105. Brunschwiler T, Schlottig G, Ni SB, Liu Y, Goicochea JV, Zurcher J, Wolf H (2012) Formulation of percolating thermal underfills using hierarchical self-assembly of micro and nanoparticles by centrifugal forces and capillary bridging. In: Proceedings of 45th international symposium on microelectronics, 9–13 September 2012

    Google Scholar 

  106. Lin ZY, Mcnamara A, Liu Y, Moon K, Wong CP (2014) Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos Sci Technol 90:123–128

    Article  Google Scholar 

  107. Liang QZ, Moon K, Jiang HJ, Wong CP (2012) Thermal conductivity enhancement of epoxy composites by interfacial covalent bonding for underfill and thermal interfacial materials in Cu/Low-K application. IEEE Trans Compon Packag Manuf Technol 2(10):571–1579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuqing Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, Z., Zhu, P., Wong, C.P. (2017). Flip-Chip Underfill: Materials, Process, and Reliability. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics