Skip to main content

Advanced Chip-to-Substrate Connections

  • Chapter
  • First Online:
Materials for Advanced Packaging
  • 9920 Accesses

Abstract

Transistor scaling, shrinking the critical dimensions of the transistor, has led to continuous improvements in system performance and cost. Higher density of the transistors and larger chip size has also led to new challenges for chip-to-substrate connections. The pace of change in packaging and chip-to-substrate connections has accelerated because off-chip issues are increasingly a limiting factor in product cost and performance. Chip-to-substrate connections are challenged on many fronts, including number of signal input-output (I/O) connections, I/O that operate at high speed, power and ground I/O, and low cost.

This chapter examines various techniques and structures that have been designed to address these challenges. The mechanical compliance and electrical performance modeling of the interconnect structures is important in determining the geometry, materials, and processing necessary for an application. Various approaches have been taken to satisfy both the mechanical and electrical needs for these I/O connections. Mechanically compliant structures based on traditional solder-bonded connections can drastically improve thermomechanical reliability but may compromise electrical performance. Additional structures improve upon the compliance of the solder ball by capping a pillar structure with solder, but still require the reliable protection of underfill. More high performance and long-term improvements to satisfy both mechanical and electrical needs such as interconnects composed entirely of copper are also discussed. Finally, the future needs projected by the ITRS for ultra-high off-chip frequency and thermal management are addressed with respect to chip-to-substrate interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horowitz SJ, Felten JJ, Gerry DJ (1979) IEEE Trans Compon Hybrid Manufact Technol CHMT-2(4):460–466

    Article  Google Scholar 

  2. Khoury SL, Burkhard DJ, Galloway DP, Scharr TA (1990) Proceedings of electronic components and technology conference, vol. 1, pp 768–776

    Google Scholar 

  3. Pascariu G, Cronin P, Crowley D (2003) Proceedings of electronics manufacturing technology symposium, pp 423–426

    Google Scholar 

  4. Wolflick P, Feldmann K (2002) Proceedings of electronics manufacturing technology symposium, pp 27–34

    Google Scholar 

  5. ITRS (2013) Process integration, devices, and structures. International Technology Roadmap for Semiconductors, 2013. SIA, Washington, DC.

    Google Scholar 

  6. Kumar V, Sharma R, Uzunlar E, Zheng L, Bashifullah R, Kohl P, Bakir M, Naeemi A (2014) IEEE Trans Compon Packag Manufact Technol 4(8):1335–1346

    Article  Google Scholar 

  7. Muramatsu A, Hashimoto M, Onodera H (2005) IEICE Trans Fund Electron Comm Comput Sci 88(12):3564–3572

    Article  Google Scholar 

  8. Shakeri K, Bakir M, Meindl JD (2004) Proceedings of the IEEE SOC conference, pp 78–81

    Google Scholar 

  9. Becker WD, Eckhardt J, Frech RW, Katopis GA, Klink E, McAllister MF, McNamara TG, Muench P, Richter SR, Smith HH (1998) IEEE Trans Compon Packag Manufact Technol 21(2):157–163

    Article  Google Scholar 

  10. Mandhana OP (2004) IEEE Trans Adv Packag 27(1):107–120

    Article  Google Scholar 

  11. Katopis GA (1985) Proc IEEE 73(9):1405–1415

    Article  Google Scholar 

  12. Chen, CT, Zhao J, Chen Q (2001) Proceedings of electronic components and technology conference, pp 1102–1106

    Google Scholar 

  13. Grover FW (1962) Inductance calculations working formulas and tables. Dover, New York

    MATH  Google Scholar 

  14. Troster G (1999) Proceedings of design, automation, and test in Europe conference and exhibition, pp 423–424

    Google Scholar 

  15. Jordan EC, Balmain KG (2003) Electromagnetic waves and radiating systems, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  16. Kraus JD (1992) Electromagnetics, 4th edn. McGraw-Hill, Hightstown

    MATH  Google Scholar 

  17. Rinne GA, Franzon PD. http://www.unitive.com/casestudies/pdfs/par.pdf

  18. Pozar DM (1998) Microwave engineering, 2nd edn. Wiley, New York

    Google Scholar 

  19. He A, Osborn T, Allen SAB, Kohl PA (2007) J Electrochem Soc 154(6):F106–F110

    Article  Google Scholar 

  20. Tummala RR (2001) Fundamentals of microsystems packaging. McGraw-Hill, New York

    Google Scholar 

  21. Zhang Z, Wong CP (2004) IEEE Trans Adv Packag 27(3):515–524

    Article  Google Scholar 

  22. Hillman C, Rogers K, Dasgupta A, Pecht M, Dusek R, Lorence B (1999) Circuit World 25(3):28–38

    Article  Google Scholar 

  23. Zhang Z, Sitaraman SK, Wong CP (2004) IEEE Trans Electron Packag Manufact 27(1):86–93

    Article  Google Scholar 

  24. Zhai CJ, Sidharth R, Blish II (2003) IEEE Trans Dev Mater Reliab 3(4):207–212

    Article  Google Scholar 

  25. Mercado LL, Sarihan V, Fiorenzo R (2004) IEEE Trans Adv Packag 27(1):151–157

    Article  Google Scholar 

  26. http://www.me.binghamton.edu/O.M.R.L/Facilities-2D-3DANSYS.htm.

  27. Perkins A, Sitaraman SK (2003) Proceedings of the electronic components and technology conference, pp 422–430

    Google Scholar 

  28. Yeo A, Lee C, Pang JHL (2004) Proceedings of thermal and mechanical simulation and experiments in micro-electronics and micro-systems conference, pp 549–555

    Google Scholar 

  29. Fan X, Pei M, Bhatti PK (2006) Proceedings of the electronic components and technology conference, pp 972–980

    Google Scholar 

  30. Wang G, Ho PS, Groothuis S (2002) Microelectron Reliab 45:1079–1093

    Article  Google Scholar 

  31. Tunga K, Kacker K, Pucha RV, Sitaraman SK (2004) Proceedings of the electronic components and technology conference, pp 1579–1585

    Google Scholar 

  32. Classe FC, Sitaraman SK (2004) Proceedings of the electronics packaging technology conference, pp 82–89

    Google Scholar 

  33. Zahn BA (2002) Proceedings of the international electronics manufacturing technology symposium, pp 274–284

    Google Scholar 

  34. Pang JHL (2011) Thermo-mechanical reliability test and analysis. Springer, New York, pp 89–122

    Google Scholar 

  35. Che FX, Pang JHL (2013) IEEE Trans Dev Mater Reliab 13(1):36–49

    Article  Google Scholar 

  36. Shen J, Zhai D, Cao Z, Zhao M, Pu Y (2014) J Electron Mater 43(2):567–578

    Article  Google Scholar 

  37. Raghaven S, Schmadlak I, Leal G, Sitaraman SK (2014) IEEE Trans Dev Mater Reliab 14(1):57–65

    Article  Google Scholar 

  38. Garrou P (1999) Wafer level chip scale packing. In: Semi Chip Scale International ’99, p D-1

    Google Scholar 

  39. www.tessera.com

  40. Longford A, James D (2006) Presentation in advance packaging conference, Semicon Europa, April 2006

    Google Scholar 

  41. Bakir M, Reed H, Thacker H, Patel C, Kohl P, Martin K, Meindl J (2003) IEEE Trans Electron Dev 50(10):2039–2048

    Article  Google Scholar 

  42. Dang B, Bakir M, Patel C, Thacker H, Meindl J (2006) J Microelectromech Syst 15(5):523–530

    Article  Google Scholar 

  43. Bhusari D, Reed H, Wedlake M, Padovani A, Bidstrup-Allen SA, Kohl PA (2001) J Microelectromech Syst 10(3):400–408

    Article  Google Scholar 

  44. Bakir MS, Reed HA, Mule AV, Kohl PA, Martin KP, Meindl JD (2002) IEEE custom integrated circuits conference, Orlando, FL, May 2002

    Google Scholar 

  45. Zhu Q, Ma L, Sitaraman SK (2002) Proceedings of international conference on thermal, mechanics and thermo-mechanical phenomena in electronic systems, Orlando, FL, 29 May 2002

    Google Scholar 

  46. Zhu Q, Ma L, Sitaraman SK (2001) Proceedings of InterPack, The Pacific Rim International, intersociety, electronic packaging technical/business conference & exhibition, Kauai, 8–13 July 2001

    Google Scholar 

  47. Zhu Q, Ma L, Sitaraman S (2004) J Electron Packag 126(2):237–246

    Article  Google Scholar 

  48. Kacker K, Sokol T, Sitaraman SK (2007) Proceedings of the electronic components technology conference, pp 1678–1684

    Google Scholar 

  49. Arunasalam P, Ackler H, Sammakia B (2006) Proceedings of the electronics components and technology conference, pp 1147–1153

    Google Scholar 

  50. Liao EB, Tay AAO, Ang SST, Fend HH, Nagarajan R, Kripesh V, Kumar R, Iyer MK (2006) Proceedings of the electronic components and technology conference, pp 1246–1250

    Google Scholar 

  51. Xu P, Pfeiffenberger SH, Ellis CD, Hamilton MC (2014) J Microelectromech Syst 23(5):1219–1227

    Article  Google Scholar 

  52. Wang T, Tung F, Foo L, Dutta V (2001) Proceedings of the electronic components and technology conference, pp 945–949

    Google Scholar 

  53. Rao VS, Tay AAO, Kripesh V, Lim CT, Yoon SW (2004) Proceedings of the electronic packaging technology conference, pp 444–449

    Google Scholar 

  54. Tummala RR, Raj PM, Aggarwal A, Mehrotra G, Koh SW, Bansal S (2006) Proceedings of the electronic components and technology conference, pp 102–111

    Google Scholar 

  55. Aggarwal A, Raj PM, Lee BW, Yim MJ, Tambawala A, Iyer M, Swaminathan M, Wong CP, Tummala R (2007) Proceedings of the electronic components and technology conference, pp 905–913

    Google Scholar 

  56. Aggarwal AO, Raj PM, Tummala RR (2007) IEEE Trans Adv Packag 30(3):384–392

    Article  Google Scholar 

  57. Huffman A, Lueck M, Bower C, Temple D (2007) Proceedings of the electronic components technology conference, pp 1589–1596

    Google Scholar 

  58. Iwasaki T, Watanabe M, Baba S, Hatanaka Y, Idaka S, Yokoyama Y, Kimura M (2006) Proceedings of the electronic components technology conference, pp 1216–1222

    Google Scholar 

  59. Sakuma K, Andry PS, Tsang CK, Wright SL, Dang B, Patel CS, Webb BC, Maria J, Sprogis EJ, Kang SK, Polastre RJ, Horton RR, Knickerbocker JU (2008) IBM J Res Dev 32(6):611–622

    Article  Google Scholar 

  60. Young WB, Yang WL (2006) IEEE Trans Adv Packag 29(3):647–653

    Article  Google Scholar 

  61. Lui S, Chen W (2010) IEEE Trans Compon Packag Technol 33(4):819–829

    Article  Google Scholar 

  62. Fan A, Rahman A, Reif R (1999) Electrochem Solid State Lett 2(10):534–536

    Article  Google Scholar 

  63. Chen KN, Fan A, Tan CS, Reif R (2006) J Electron Mater 35(2):230–234

    Article  Google Scholar 

  64. Chen KN, Tan CS, Fan A, Reif R (2005) J Electron Mater 34(12):1464–1467

    Article  Google Scholar 

  65. Chen KN, Tan CS, Fan A, Reif R (2004) Electrochem Solid State Lett 7(1):G14–G16

    Article  Google Scholar 

  66. Tang Y, Chang Y, Chen K (2012) Microelectron Reliab 52:312–320

    Article  Google Scholar 

  67. Chen KN, Chang SM, Shen LC, Reif R (2006) J Electron Mater 35(5):1082–1086

    Article  Google Scholar 

  68. Rebhan R, Hingerl K (2015) J Appl Phys 118:135301

    Article  Google Scholar 

  69. Tan C, Lim D, Ang X, Wei J, Leong KC (2012) Microelectron Reliab 52:321–324

    Article  Google Scholar 

  70. Tan CS, Reif R (2005) Electrochem Solid State Lett 8(6):G147–G149

    Article  Google Scholar 

  71. Kim TH, Howlander MMR, Itoh T, Suga T (2003) J Vac Sci Technol A 21(2):449–453

    Article  Google Scholar 

  72. Shigetou A, Itoh T, Matsuo M, Hayasaka N, Okumura K, Suga T (2006) IEEE Trans Adv Packag 29(2):218–226

    Article  Google Scholar 

  73. Schlesinger M, Paunovic M (2000) Modern electroplating, 4th edn. Wiley, New York

    Google Scholar 

  74. Andricacos P, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) IBM J Res Dev 42(5):567–574

    Article  Google Scholar 

  75. He A, Osborn T, Allen SAB, Kohl PA (2006) Electrochem Solid State Lett 9(12):C192–C195

    Article  Google Scholar 

  76. Koo H-C, Saha R, Kohl PA (2012) J Electrochem Soc 159(5):D319–D322

    Article  Google Scholar 

  77. Koo H-C, Saha R, Kohl PA (2011) J Electrochem Soc 158(12):D698–D703

    Article  Google Scholar 

  78. An PN, Kohl PA (2010) IEEE Trans Compon Packag Technol 33(3):621–628

    Article  Google Scholar 

  79. Osborn T, Galiba N, Kohl PA (2009) J Electrochem Soc 156(7):D226–D230

    Article  Google Scholar 

  80. Osborn A, He N, Galiba P, Kohl A (2008) J Electrochem Soc 155(4):D308–D313

    Article  Google Scholar 

  81. He A, Osborn T, Allen SA, Kohl PA (2008) J Electrochem Soc 155(4):D314–D322

    Article  Google Scholar 

  82. Gao S, Holmes AS (2006) IEEE Trans Adv Packag 29(4):725–734

    Article  Google Scholar 

  83. Kang SY, Ju TH, Lee YC (1993) Proceedings of the electronic components technology conference, pp 877–882

    Google Scholar 

  84. Watanabe N, Asano T (2006) Proceedings of the electronic components and technology conference, IEEE, pp 125–130

    Google Scholar 

  85. Watanabe N, Asano T (2007) Proceedings of the electronic components and technology conference, IEEE, pp 622–626

    Google Scholar 

  86. Yokoshima T, Yamaji Y, Oosato H, Tamura Y, Kikuchi K, Nakagawa H, Aoyagi M (2007) Electrochem Solid State Lett 10(9):D92–D94

    Article  Google Scholar 

  87. Honma H, Watanabe H, Kobayashi T (1994) J Electrochem Soc 141(7):1791–1795

    Article  Google Scholar 

  88. Yokoshima T, Nakamura S, Kaneko D, Osaka T, Takefusa S, Tanaka A (2002) J Electrochem Soc 149(8):C375–C382

    Article  Google Scholar 

  89. Yamaji Y, Yokoshima T, Oosato H, Igawa N, Tamura Y, Kikuchi K, Nakagawa H, Aoyagi M (2007) Proceedings of the electronic components and technology conference, pp 898–904

    Google Scholar 

  90. Miller DAB (2002) Proc IEEE 88(6):728–749

    Article  Google Scholar 

  91. Wu WC, Huang RB, Hsu HT, Chang EY, Hsu LH, Huang CH, Hu YC, Lai MI (2005) Proceedings of the APMC

    Google Scholar 

  92. Wu WC, Chang EY, Huang CH, Hsu LS, Starski JP, Zirath H (2007) Electron Lett 43:17

    Google Scholar 

  93. Meindl JD, Davis JA, Zarkesh-Ha P, Patel CS, Martin KP, Kohl PA (2002) IBM J Res Dev 46(2/3):245–263

    Article  Google Scholar 

  94. Bakir MS, Dang B, Ogunsola OOA, Sarvari R, Meindl JD (2007) IEEE Trans Adv Packag 54(9):2426–2437

    Article  Google Scholar 

  95. Tuckerman DB, Pease RFW (1981) IEEE Electron Dev Lett 2(5):126–129

    Article  Google Scholar 

  96. Dang B, Bakir MS, Meindl JD (2006) IEEE Electron Dev Lett 27(2):117–119

    Article  Google Scholar 

  97. Dang B, Joseph P, Bakir MS, Spencer T, Kohl PA, Meindl JD (2005) Proceedings of the international interconnect technology conference, pp 180–182

    Google Scholar 

  98. Zhao M, Huang ZR (2007) Proceedings of the electronic components technology conference, pp 2017–2023

    Google Scholar 

  99. Green C, Kottke P, Han X, Woodrum C, Sarvey T, asrar P, Zhang X, Joshi Y, Fedorov A, Sitaraman S, Bakir M (2015) J Electron Packag 137(4):040802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Kohl Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kohl, P.A. (2017). Advanced Chip-to-Substrate Connections. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics