Skip to main content

Die Attach Adhesives and Films

  • Chapter
  • First Online:

Abstract

This chapter outlines the strong correlation between developments in electronic packaging technologies and required properties of die attach materials. An overview of die attach materials is summarized with the trends in the market. Die attach paste, adhesive tape for a lead on chip (LOC), die attach film, and the prospects of advanced die attach film are described in each section. The technical requirements of the die attach materials, which include high purity, fast curing, low stress, high package crack resistance, and multi-chip packaging are discussed.

Die attach films have become the main stream of die attach materials owing to their excellent properties and reliability. The future of advanced die attach films is explained with the introduction of adhesive film with dicing/die attach dual functionality.

The effects of adhesive properties such as peel strength and water absorption to improve package crack resistance are reported in detail. The development of die attach films with micro-phase separation structure for multi-layered packaging process is reviewed. Evaluation of die attach materials for next generation packages is also introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kayama S, Tanimoto M, Uchida S, Tsukada H, Suto T (1992) ASIC packaging technology handbook. Science Forum

    Google Scholar 

  2. Hagimoto E (1997) CSP technology. Kogyochosakai, Tokyo

    Google Scholar 

  3. Kasuga T (1998) CSP/BGA technology. Nikkan Kogyo Shinbunsha, Tokyo

    Google Scholar 

  4. Dotani A (2003) Semicon Japan 2003 navigator. Nikkei Microdev 49(2003)

    Google Scholar 

  5. Asakura H (1999) Nikkei Microdev 4:74

    Google Scholar 

  6. Fujita K (1998) Current die bonding technology. In: Proceedings of VLSI assembly technology forum Part II, ISS industrial systems, p 37

    Google Scholar 

  7. Takahashi K (2000) SEMI technology symposium, p 539

    Google Scholar 

  8. Makino N, Ichimura K (1981) Suzuki Electron Parts Mater 20(11):69

    Google Scholar 

  9. Yamazaki M (1996) Die bonding technology for high performance of LSI package. In: Proceedings of LSI assembly technology forum, ISS industrial systems, p 37

    Google Scholar 

  10. Kanno Y (1998) Current die bonding technology for novel package. In: Proceedings of VLSI assembly technology forum Part II, ISS industrial systems, p 1

    Google Scholar 

  11. Maekawa I (1998) Triceps 12:21

    Google Scholar 

  12. Ito G (1969) Keikinzoku/J Jpn Inst Light Metals 18(3):177

    Google Scholar 

  13. Bolger CJ (1982) 14th National SAMP technology conference, 12 October

    Google Scholar 

  14. Bolger JC, Morano SL (1984) Adhes Age 27(7):17–20

    Google Scholar 

  15. Harada M (1992) Gekkan Semicond World 9:119

    Google Scholar 

  16. Kobayashi O (1994) Gekkan Semicond World 5:53

    Google Scholar 

  17. Ishio S, Maruyama T, Miyata K, Soda Y, Namii A, Toyozawa K, Fujita K, Kada M (1994) Technical report of the Institute of Electronics, Information and Communication Engineers, ICD94-155 (11), 65

    Google Scholar 

  18. Yamada K, Dohdoh T (2007) Electron Parts Mater 4:93

    Google Scholar 

  19. Uno T (1992) Gekkan Semicond World 9:114

    Google Scholar 

  20. Kawamura T, Suzuki T, Sugimoto H, Imai N, Kzuya M (1993) Hitachi cable. 12:37

    Google Scholar 

  21. Wasulko MW, Stauffer GA (1988) Microelectr Manuf Test, 9

    Google Scholar 

  22. Akada Y, Nakamoto K, Akazawa K (1991) Nitto Denko Tech Rep 29(2):69

    Google Scholar 

  23. Takeda S, Masuko T, Yusa M, Miyadera Y (1995) Die bonding adhesive film. Hitachi Chemical Technical Report, No. 24, p 25

    Google Scholar 

  24. Takeda S, Masuko T, Miyadera Y, Yamazaki M, Maekawa I (1997) A novel die bonding adhesive-silver filled film. In: Proceedings of 47th electronic components & technology conference (ECTC), 18–21 May 1997, San Jose, p 518

    Google Scholar 

  25. Yasuda M (2003) Hitachi chemical technical report (40): 7

    Google Scholar 

  26. Kato T, Uruno M (2000) Seikei-Kakou 12(5):246

    Google Scholar 

  27. Kato T, Suwa O, Fujii S, Yamazaki M, Masuko T (2004) Hitachi chemical technical report, 43, p 25

    Google Scholar 

  28. Haruta R (2007) J Jpn Inst Electron Packag 10(5):353

    Article  Google Scholar 

  29. Akejima S (2007) J Jpn Inst Electron Packag 10(5):375

    Article  Google Scholar 

  30. Matsuzaki T, Inada T, Hatakeyama K (2006) Hitachi chemical technical report, (46), 39

    Google Scholar 

  31. Ebe K, Senoo H, Yamazaki O (2006) J Adhes Soc Jpn 42(7):280

    Article  Google Scholar 

  32. Yoshida T (1994) Gekkan Semicond World 5:72

    Google Scholar 

  33. Li H, Johnson A, Wong CP (2003) IEEE Trans Compon Packag Technol 26(2):466

    Article  Google Scholar 

  34. Clair AKS, Clair TLS (1982) Polym Eng Sci 22(1):9

    Article  Google Scholar 

  35. Makino D (1994) Recent progress of the application of polyimides to microelectronics. In: Polymers for microelectronics, Kodansha, pp 380–402

    Google Scholar 

  36. Wilson D (1993) Recent advances in polyimide composites. High Perform Polym 5:77

    Article  Google Scholar 

  37. Harris FW, Beltz MW (1987) SAMPE J 23:6

    Google Scholar 

  38. Furukawa N, Yamada Y, Kimura Y (1996) High Perfom Polym 8:617

    Article  Google Scholar 

  39. Hedrick JL, Brown HR, Volksen W, Sanchez M (1997) Polymer 38(3):605

    Article  Google Scholar 

  40. Li L, Chung DDL (1991) Composites 22(3):211

    Article  MathSciNet  Google Scholar 

  41. Nakamura Y (2002) J Adhes Soc Jpn 38(11):442

    Google Scholar 

  42. Gaw K, Kikei M, Kakimoto M, Imai Y (1996) React Funct Polym 30:85

    Article  Google Scholar 

  43. Su CC, Woo EM (1995) Polymer 36(15):2883

    Article  Google Scholar 

  44. Kimoto M (2000) J Adhes Soc Jpn 36(11):456

    Article  Google Scholar 

  45. Masuko T, Takeda S (2004) J Adhes Soc Jpn 40(4):136

    Article  Google Scholar 

  46. Masuko T, Takeda S (2004) J Netw Polym Jpn 25(4):181

    Google Scholar 

  47. Kawai A, Nagata H, Takata M (1992) Jpn J Appl Phys 31:1993

    Article  Google Scholar 

  48. Fowkes FM (1964) Ind Eng Chem 56:40

    Article  Google Scholar 

  49. Imoto M (1990) J Adhes Soc Jpn 26(1):39

    Google Scholar 

  50. Hata T, Kitazaki T, Saito T (1987) J Adhes 21:177

    Article  Google Scholar 

  51. Gledhill RA, Kinloch AJ (1974) J Adhes 6:315

    Article  Google Scholar 

  52. Yamabe H (1993) J Adhes Soc Jpn 29(1):12

    Google Scholar 

  53. Takeda S, Masuko T (2000) Novel die attach films having high reliability performance for lead-free solder and CSP. In: Proceedings of 50th electronic components and technology conference (ECTC), 21–24 May 2000, Las Vegas, p 1616

    Google Scholar 

  54. Masuko T, Takeda S, Hasegawa Y (2005) J Jpn Inst Electron Packag 8(2):116

    Google Scholar 

  55. Hsiao SH, Huang PC (1997) J Polym Res 4(3):183

    Article  Google Scholar 

  56. Fedors RF (1974) Polym Eng Sci 14(2):147

    Article  Google Scholar 

  57. Okitsu T (1996) Secchaku 40(8):342

    Google Scholar 

  58. Bolger JC (1982) Polyimide adhesives to reduce thermal stress in LSI ceramic packages. In: 14th National SAMPE technology conference, October, pp 257–266

    Google Scholar 

  59. Yamanaka K, Inoue T (1989) Polymer 30:662

    Article  Google Scholar 

  60. Inoue T (1995) Prog Polym Sci 20:119

    Article  Google Scholar 

  61. Iwakura T, Inada T, Kader M, Inoue T (2006) J Soft Mater 2:13–19

    Article  Google Scholar 

  62. Inada T (2014) Polym J 46:745–750

    Article  Google Scholar 

  63. Gou Y, Aoyama Y, Takahara A, Jinnai H, Inoue T (2008) J Netw Polym 29:31

    Google Scholar 

  64. Dantzig G (1963) Linear programming and extensions. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  65. Inada T, Matsuo T (2012) Int J Multimedia Ubiquitous Eng 7(4):45

    Google Scholar 

  66. Inada T, Matsuo T (2014) Synthesiology 7(1):1–7

    Article  Google Scholar 

  67. Kim J, Lee K, Park D, Hwang T (2008) Application of through mold via (TMV) as PoP base package. In: The proceedings of 58th electronic components and technology conference, pp 1089–1092

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Takeda, S., Masuko, T., Takano, N., Inada, T. (2017). Die Attach Adhesives and Films. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics