Advertisement

3D Integration Technologies: An Overview

  • Dingyou ZhangEmail author
  • James J.-Q. Lu
Chapter

Abstract

Three-dimensional (3D) integration, which can stack different materials, technologies, and functional components vertically, is a promising technology to overcome some physical, technological, and economic limits encountered in planar integrated circuits, extending Moore’s Law and enabling “More than Moore” applications. This chapter provides an overview of 3D integration technology, including review on its enabling technologies and the associated materials. The focus in this chapter is on the current development status and recent advances in materials, processes, and applications of the 3D integration technology.

Keywords

3D integration 3D packaging Die stacking Through-silicon vias (TSVs) Wafer bonding 

References

  1. 1.
    Lu J-Q (2009) 3-D hyperintegration and packaging technologies for micro-nano systems. Proc IEEE 97:18–30CrossRefGoogle Scholar
  2. 2.
    Lee SH, Chen K-N, Lu J-Q (2011) Wafer-to-wafer alignment for three-dimensional integration: a review. J Microelectromech Syst 20(4):885–898CrossRefGoogle Scholar
  3. 3.
    Lu J-Q, McMahon J, Gutmann RJ (2012) Hybrid metal/polymer wafer bonding platform. In: Ramm P, Lu J-Q, Taklo MV (eds) Handbook of wafer bonding, 1st edn. Wiley-VCH, Weinheim, pp 215–236CrossRefGoogle Scholar
  4. 4.
    Cho SD (2011) Technical challenges in TSV integration to Si. In: SEMATECH Symposium Korea, 2011, pp 1–33Google Scholar
  5. 5.
    Chen Q, Zhang D, Xu Z, Beece A, Patti R, Tan Z, Wang Z, Liu L, Lu J-Q (2011) A novel chip-to-wafer (C2W) three-dimensional (3D) integration approach using a template for precise alignment. Microelectron Eng 92:15–18CrossRefGoogle Scholar
  6. 6.
    Pangracious V, Marrakchi Z, Mehrez H (2015) Three-dimensional integration: a more than Moore technology, three-dimensional design methodologies for tree-based FPGA architecture. Springer, New York, pp 13–41Google Scholar
  7. 7.
    Jung SM, Kim K (2009) 3D Integration and packaging for memory. In: Bakir MS, Meindl JD (eds) Integrated interconnect technologies for 3D nanoelectronic systems. Artech House, Boston, pp 389–420Google Scholar
  8. 8.
    Through Silicon Via (TSV) Data Sheet (2016) Amkor Technology. www.amkor.com/go/TSV-datasheet. Accessed 15 May 2016
  9. 9.
    What is 3D Integration? 3dincities. http://www.3dincites.com/3d-incites-knowledge-portal/what-is-3d-integration/. Accessed 15 May 2016
  10. 10.
    Chanchani R (2009) 3D integration technologies—an overview. In: Lu D, Wong CP (eds) Materials for advanced packaging, 1st edn. Springer, Berlin, pp 1–50CrossRefGoogle Scholar
  11. 11.
    Kim DW, Vidhya R, Henderson B , Ray U, Gu S , Zhao W, Radojcic R, Nowak M, Lee C. Paek J, Lee K, Huemoeller R (2013) Development of 3D Through Silicon Stack (TSS) assembly for wide IO memory to logic devices integration In: IEEE Electronic components & technology conference (ECTC), 2013, pp 77–80Google Scholar
  12. 12.
    Chong D, Lee WE, Lim BK, Pang J, Low TH (2004) Mechanical characterization in failure strength of silicon dice. In: The ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITHERM04), vol 2, IEEE, pp. 203–210Google Scholar
  13. 13.
    Sekhar VN, Shen L, Kumar A, Chai TC, Lee WS, Wang XL, Zhang X, Premchandran CS, Kripesh V, Lau JH (2008) Effect of wafer back grinding on the mechanical behavior of multilayered low-k for 3D-stack packaging applications, In: IEEE Electronic components and technology conference (ECTC), 2008, pp 1517–1524Google Scholar
  14. 14.
    Sekhar VN, Shen L, Kumar A, Chai TC, Zhang X, Premchandran CS, Kripesh V, Yoon SW, Lau JH (2012) Study on the effect of wafer back grinding process on nanomechanical behavior of multilayered low-k stack. IEEE Trans Compon Packag Manufact Technol 2(1):3–12CrossRefGoogle Scholar
  15. 15.
    Ramm P, Lu J-Q, Taklo MV (2012) Handbook of wafer bonding. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. 16.
    Hermanowski J (2009) Thin wafer handling—study of temporary wafer bonding materials and processes. In: IEEE international conference on 3D system integration, 2009, pp 1–5Google Scholar
  17. 17.
    Wide range of applications for edge trimming, DISCO. http://www.disco.co.jp/eg/solution/apexp/dicing/edge.html. Accessed 15 May 2016
  18. 18.
    Stress Relief, DISCO. http://www.discousa.com/eg/solution/library/strelief.html. Accessed 15 May 2016
  19. 19.
    Wafer dicing. Wikipedia. https://en.wikipedia.org/wiki/Wafer_dicing. Accessed 15 May 2016
  20. 20.
    Stealth Dicing vs. Ordinary Dicing Methods, Hamamatsu Photonics K. K. http://www.hamamatsu.com/jp/en/community/SD/SD_outline/SD_comparison.html. Accessed 15 May 2016
  21. 21.
    Stealth Dicing Technology, Hamamatsu Photonics K. K. http://www.hamamatsu.com/us/en/technology/innovation/sd/index.html. Accessed 15 May 2016
  22. 22.
    Lu J-Q, Zhang D, Ramm P (2014) Overview of bonding technology and assembly. In: Garrou P, Koyanagi M, Ramm P (eds) Handbook of 3D integration, vol 3, 3D process technology. Wiley-VCH, Weinheim, pp 261–277Google Scholar
  23. 23.
    Batra P, Skordas S, LaTulipe D, Winstel K, Kothandaraman C, Himmel B, Maier G, He B, Gamage DW, Golz J, Lin W, Vo T, Priyadarshini D, Hubbard A, Cauffman K, Peethala B, Barth J, Kirihata T, Graves-Abe T, Robson N, Iyer S (2014) Three-dimensional wafer stacking using Cu TSV integrated with 45 nm high performance SOI-CMOS embedded DRAM technology. J Low Power Electron Appl 4:77–89CrossRefGoogle Scholar
  24. 24.
    Oppermann H, Hutter M (2012) Au/Sn solder. In: Ramm P, Lu JJ-Q, Taklo MMV (eds) Handbook of wafer bonding. Wiley-VCH, Weinheim, pp 119–138CrossRefGoogle Scholar
  25. 25.
    Hoivik N, Aasmundtveit K (2012) Wafer level solid-liquid interdiffusion bonding. In: Ramm P, Lu JJ-Q, Taklo MMV (eds) Handbook of wafer bonding. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Chen KN, Tan CS (2012) Thermocompression Cu-Cu bonding of blanket and patterned wafers. In: Ramm P, Lu JJ-Q, Taklo MMV (eds) Handbook of wafer bonding. Wiley-VCH, Weinheim, pp 161–180CrossRefGoogle Scholar
  27. 27.
    Chen Q, Zhang D, Wang Z, Liu L, Lu J-Q (2011) Chip-to-wafer (C2W) 3D integration with well-controlled template alignment and wafer-level bonding. In: IEEE electronic components and technology conference (ECTC), pp 1–6Google Scholar
  28. 28.
    Di Cioccio L (2012) Cu/SiO2 hybrid bonding. In: Ramm P, Lu JJ-Q, Taklo MMV (eds) Handbook of wafer bonding. Wiley-VCH, Weinheim, pp 237–260CrossRefGoogle Scholar
  29. 29.
    Skordas S, Tulipe DCL, Winstel K, Vo TA, Priyadarshini D, Upham A, Song D, Hubbard A, Johnson R , Cauffman K, et al. (2012) Wafer-scale oxide fusion bonding and wafer thinning development for 3D systems integration. In: Proceedings of the 3rd IEEE international workshop on low temperature bonding for 3D integration (LTB-3D), May 2012Google Scholar
  30. 30.
    Niklaus F, Stemme G, Lu J-Q, Gutmann RJ (2006) Adhesive wafer bonding. J Appl Phy 99(1):031101.1–031101.28Google Scholar
  31. 31.
    Roa F (2015) Extending advanced interconnect technology to Finer Pitches with conventional mass reflow. In: IEEE electronic components and technology conference (ECTC), pp 470–474Google Scholar
  32. 32.
    Lee M, Yoo M, Cho J, Lee S, Kim J , Lee C, Kang D, Zwenger C, Lanzone R (2009) Study of interconnection process for fine pitch flip chip. In: IEEE electronic components and technology conference (ECTC), pp 720–723Google Scholar
  33. 33.
    Taluy A, Lhostis S, Jouve A, Garnier G, Dezandre E, Farcy A, Cheramy S, Sillon N, Sylvestre A (2011) Performances of wafer-level underfill with 50 μm pitch interconnections: comparison with conventional underfill. In: IEEE electronic components and technology conference (ECTC), pp 129–134Google Scholar
  34. 34.
    Nah J-W, Gaynes MA, Feger C (2011) Development of wafer level underfill materials and assembly processes for fine pitch Pb-free solder flip chip packaging. In: IEEE electronic components and technology conference (ECTC), pp 1015–1022Google Scholar
  35. 35.
    Cadacio F, Rebibis KJ, Capuz G, Daily R, Gerets C, Sleeckx E, Duval F, Wang T, Miller RA, Beyer G, Beyne E (2014) Reliability of 3D package using wafer level underfill and low CTE Epoxy Mold compound materials. In: IEEE electronic components and technology conference (ECTC), pp 444–448Google Scholar
  36. 36.
    Chuang CL, Chen WH, Li HT, Chen HT (2010) Reliability of assembly of chips and flex substrates using thermosonic flip-chip bonding process with a non-conductive paste. Microelectron Eng 87(11):2146–2157CrossRefGoogle Scholar
  37. 37.
    Frye D, Guino R, Gupta S , Sano M, Sato K, Lida K (2010) Gold-gold interconnects to copper pillar using fast thermal compression bonding using non-conductive paste. In: IEEE electronic components and technology conference (ECTC), pp 427–430Google Scholar
  38. 38.
    Feger C (2005) The over-bump applied resin wafer-level underfill process: process, material and reliability. In: IEEE electrical components and technology conference (ECTC), pp 1502–1505Google Scholar
  39. 39.
    Busch C, Baldwin DF (2005) Flip chip processing using wafer-applied underfills. In: IEEE electronic components and technology conference (ECTC), pp 297–306Google Scholar
  40. 40.
    Johnson SC (2009) Via first, middle, last, or after? 3D Packag 13:2–5Google Scholar
  41. 41.
    Beyne E (2013) 2.5 & 3D enabling technologies selection based on COO & technology maturity tradeoff analysis. In: European 3D TSV summit, January 2013Google Scholar
  42. 42.
    Farooq MG, Graves-Abe TL, Landers WF, Kothandaraman C, Himmel BA, Andry PS, Tsang CK, Sprogis E, Volant RP, Petrarca KS, Winstel KR, Safran JM, Sullivan TD, Chen F, Shapiro MJ, Hannon R, Liptak R, Berger D, Iyer SS (2011) 3D copper TSV integration, testing and reliability. In: IEEE international electron devices meeting (IEDM), pp. 7.1.1–7.1.4Google Scholar
  43. 43.
    Interconnect, (2013) The international technology roadmap for semiconductors. Semiconductor Industry Association, Washington, DCGoogle Scholar
  44. 44.
    Redolfi A, Velenis D, Thangaraju S, Nolmans P, Jaenen P, Kostermans M, Baier U, Van Besien E, Dekkers H, Witters T, Jourdan N, Van Ammel A, Vandersmissen K, Rodet S, Philipsen HGG, Radisic A, Heylen N, Travaly Y, Swinnen B, Beyne E (2011) Implementation of an industry compliant, 5×50 μm, via-middle TSV technology on 300 mm wafers. In: IEEE electronic components and technology conference (ECTC), pp 1384–1388Google Scholar
  45. 45.
    Beyne E (2013) High-bandwidth chip-to-chip interfaces: 3D stacking, interposers and optical I/O. In: IMEC technology forum, TaiwanGoogle Scholar
  46. 46.
    Beyne E, La Manna A (2014) 3D system integration technology choices and challenge. In: SEMICON Europa, Oct 2014Google Scholar
  47. 47.
    Agarwal R, Hiner D, Kannan S, Lee K, Kim D, Paek J, Kang S, Song Y, Dej S, Smith D, Thangaraju S, Paul J (2014) TSV integration on 20 nm Logic Si: 3D assembly and reliability results. In: IEEE electronic components and technology conference (ECTC), pp 590–595Google Scholar
  48. 48.
    Zhang D, Smith D, Kumarapuram G, Giridharan R, Kakita S, Rabie MA, Feng P, Edmundson H, England L (2015) Process development and optimization for 3 μm high aspect ratio via-middle through-silicon vias at wafer level. IEEE Trans Semicond Manuf 28(4):454–460CrossRefGoogle Scholar
  49. 49.
    Solberg V (2012) TSV process variations for 2.5 and 3D semiconductor packaging. In: International wafer-level packaging conference (IWLPC), NovemberGoogle Scholar
  50. 50.
    Kim G-S (2012) 3D/2.5D TSV interposer. In: SEMATECH symposium Korea, OctoberGoogle Scholar
  51. 51.
    Ramm P (2014) Shrinking 3D ICs—capabilities and frontiers of through silicon via technologies. In: Advanced European infrastructures and detectors conference (AIDA)Google Scholar
  52. 52.
    Andry PS, Tsang CK, Webb BC, Sprogis EJ, Wright SL, Dang B, Manzer DG (2010) Fabrication and characterization of robust through-silicon vias for silicon-carrier applications. IBM J Res Dev 52(6):571–581CrossRefGoogle Scholar
  53. 53.
    Van Huylenbroeck P, et al. (2015) Advanced metallization scheme for 3x50μm via middle TSV and beyond. In: IEEE electronic components and technology conference (ECTC), pp 66–72Google Scholar
  54. 54.
    Tanaka T, Iwashita M, Toshima T, Fujita K, Chen J (2015) Electro-less barrier/seed formation in high aspect ratio via. In: IEEE electronic components and technology conference (ECTC), pp 78–82Google Scholar
  55. 55.
    3D TSVs, aveni (2016) http://aveni.com/wet-deposition/3d-tsvs/. Accessed 15 May 2016
  56. 56.
    Gaillard R, Mourier T, Religieux L, Bouchu D, Ribiere C, Minoret S, Gottardi M, Romero G, Mevellec V, Aumont C (2015) Full 300 mm electrical characterization of 3D integration using high aspect ratio (10: 1) mid-process through silicon vias. In: 2015 I.E. 17th electronics packaging and technology conference (EPTC), pp 1–6Google Scholar
  57. 57.
    von Trapp F (2014) SEMICON Singapore 2014: a Rosy outlook for 2.5D and 3D ICs. http://www.3dincites.com/2014/04/semicon-singapore-2014-rosy-outlook-2-5d-3d-ics/. Accessed 15 May 2016
  58. 58.
    Rose K, Beece K, Zhang T, Lu J-Q (2012) The Implications of fault toleration for yield, known good die, and test strategies in 3D integration. In: 3rd IEEE international workshop on testing three-dimensional stacked integrated circuits (3D-TEST), November, 2012Google Scholar
  59. 59.
    Garrou P, Koyanagi M, Ramm P (eds) (2014) Handbook of 3D integration, vol 3, 3D process technology. Weinheim, Wiley-VCHGoogle Scholar
  60. 60.
    Lu D, Wong CP (eds) (2009) Materials for advanced packaging, vol 181. Springer, New YorkGoogle Scholar
  61. 61.
    Joseph AJ, Gillis JD, Doherty M, Lindgren PJ, Previti-Kelly RA, Malladi RM, Wang P-C, Erturk M, Ding H, Gebreselasie EG, McPartlin MJ, Dunn J (2010) Through-silicon vias enable next-generation SiGe power amplifiers for wireless Communications. IBM J Res Dev 52(6):635–648CrossRefGoogle Scholar
  62. 62.
    Johnson C (2016) CMOS image sensors surpassing Moores law. EE Times, Feb. 2015. http://www.eetimes.com/document.asp?doc_id=1325655. Accessed 5 Dec 2016
  63. 63.
    von Trapp F (2016) The future of image sensors is chip stacking. Sept. 2014. http://www.3dincites.com/2014/09/future-image-sensors-chip-stacking. Accessed 5 Dec 2016
  64. 64.
    Garrou P (2016) The micron memory cube consortium. Solid State Technology. Nov. 2011. http://electroiq.com/insights-from-leading-edge/2011/11/iftle-74-the-micron-memory-cube-consortium/. Accessed 5 Dec 2016
  65. 65.
    Jeddeloh J (2016) Hybrid memory cube architecture: a closer look, i-Micronews. Yole Développement, July 2012. http://imicronemo.cluster003.ovh.net/news/advanced-packaging/1856-hybrid-memory-cube-architecture-a-closer-look.html. Accessed 5 Dec 2016
  66. 66.
    Pirzada U (2013) Micron will unveil the hybrid memory Cube 3.0 specification in 2016 – significant gains expected over HMC 2.0, WCCF Tech. http://wccftech.com/micron-hybrid-memory-cube-3-0-specification/. Accessed 5 Dec 2016
  67. 67.
    Ung GM (2016) AMD sheds light on high bandwidth memory in New Radeons, Pokes Nvidia, PCWorld. May 2015. http://www.pcworld.com/article/2922599/amd-talks-up-high-bandwidth-memory-that-will-power-its-next-gpus-pokes-nvidia-too.html. Accessed 5 Dec 2016
  68. 68.
    Shah A (2016) Next-gen AMD Radeon Fiji GPUs get a launch date: June 16. PC World, June 2015. http://www.pcworld.com/article/2930792/amd-to-launch-nextgeneration-fiji-gpus-on-june-16.html. Accessed 5 Dec 2016
  69. 69.
    Lapedus M (2016) The week in review: manufacturing, semiconductor engineering. Jan. 2016. http://semiengineering.com/the-week-in-review-manufacturing-96/. Accessed 5 Dec 2016
  70. 70.
    Samsung begins mass producing worlds fastest DRAM—based on newest high bandwidth memory (HBM) interface, Samsung Press Release. Seoul, Korea, January 19, 2016. http://news.samsung.com/global/samsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface
  71. 71.
    Tyson M (2016) Samsung announces start of HBM2 mass production. HEXUS.net, January 22, 2016. http://hexus.net/tech/news/ram/89960-samsung-announces-start-hbm2-mass-production/. Accessed 5 Dec 2016
  72. 72.
    Haisty RW, Johnson RE, Mehal EW (1978) (Texas Instruments Inc.) Three-dimensional integrated circuits and methods of making same. US Patent #3,613,226, filed on Aug. 18, 1964 and granted on Oct. 19, 1971. A continuation of the application originally filed in 1964 was filed in 1971 with the same inventors and same patent tile; the patent was granted on July 24, 1973 with US Patent #3,748,548Google Scholar
  73. 73.
    Lu J-Q (2012) 3D hyper-integration: past, present and future. Fut Fab Int 41:81–87Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.GlobalfoundriesMaltaUSA
  2. 2.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations