Skip to main content

The Glutamine Transporters and Their Role in the Glutamate/GABA–Glutamine Cycle

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA–glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAR:

Amino acid response

AARE:

AAR elements

APC:

Amino acid- polyamine- and organocations family

BCH:

2-Aminobicyclo-(2-2-1)-hepatane-2-caboxylic acid

CATs:

Cationic amino acid transporters

CNS:

Central nervous system

DHT:

Dihydrotestosterone

EAAT:

Excitatory amino acid transporters

EGFR:

Epidermal growth factor receptor

eIF2α:

Eukaryotic initiation factor 2α

ERK:

Extracellular regulated kinase

FXR:

Farnesoid X receptor

GABA:

Gamma-aminobutyric acid

GAT:

Gamma-aminobutyric acid transporter

GGC:

Glutamate/GABA–glutamine cycle

GS:

Glutamine synthetase

HATs:

Heteromeric amino acid transporters

HE:

Hepatic encephalopathy

IPSC:

Inhibitory postsynaptic potential

LATs:

L-type amino acid transporters

L-DOPA:

Dihydroxyphenylalanine

MAP2:

Anti-micro-tubule-associated protein-2

MAPK:

Mitogen-activated protein kinase

MeAIB:

α-Methylamino-iso-butyric acid

Mn:

Manganese

PAG:

Phosphate-activated glutaminase

PI3K:

Phosphatidylinositol 3-kinase

PKB:

Protein kinase B

PMA:

Phorbol-12-myristate-13-acetate

SGK:

Glucocorticoid inducible kinase

SNAT:

Solute neutral amino acid transporters

TCA:

Tricarboxylic acid

TMB:

Transmembrane domain

UTR:

3′-untranslated region

vGAT:

Vesicular gamma-aminobutyric acid transporter

References

  • Aasly J, Gårseth M, Sonnewald U, Zwart JA, White LR, Unsgård G (1997) Cerebrospinal fluid lactate and glutamine are reduced in multiple sclerosis. Acta Neurol Scand 95:9–12

    Article  CAS  PubMed  Google Scholar 

  • Albers A, Bröer A, Wagner CA, Setiawan I, Lang PA, Kranz EU, Lang F, Bröer S (2001) Na+ transport by the neural glutamine transporter ATA1. Pflugers Arch 443:92–101

    Article  CAS  PubMed  Google Scholar 

  • Albers T, Marsiglia W, Thomas T, Gameiro A, Grewer C (2012) Defining substrate and blocker activity of alanine-serine-cysteine transporter 2 (ASCT2) ligands with novel serine analogs. Mol Pharmacol 81:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht J, Jones EAA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170:138–146

    Article  CAS  PubMed  Google Scholar 

  • Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C, Varoqui H, Erickson JD, Matteoli M (2002) Localization and functional relevance of system a neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 277:10467–10473

    Article  CAS  PubMed  Google Scholar 

  • Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332

    CAS  PubMed  Google Scholar 

  • Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58:730–735

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  • Balkrishna S, Broer A, Kingsland A, Broer S (2010) Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physiol 299:C1047–C1057

    Article  CAS  PubMed  Google Scholar 

  • Blot A, Billups D, Bjørkmo M, Quazi AZ, Uwechue NM, Chaudhry FA, Billups B (2009) Functional expression of two system A glutamine transporter isoforms in rat auditory brainstem neurons. Neuroscience 164:998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode BP (2001) Recent molecular advances in mammalian glutamine transport. J Nutr 131:2475s–2485s

    CAS  PubMed  Google Scholar 

  • Boehmer C, Okur F, Setiawan I, Bröer S, Lang F (2003) Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB. Biochem Biophys Res Commun 306:156–162

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Daniel H, Gasnier B (2004) The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch 447:776–779

    Article  CAS  PubMed  Google Scholar 

  • Boulland J-LL, Osen KK, Levy LM, Danbolt NC, Edwards RH, Storm-Mathisen J, Chaudhry FA (2002) Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. Eur J Neurosci 15:1615–1631

    Article  PubMed  Google Scholar 

  • Boulland J-L, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41:260–275

    Article  PubMed  Google Scholar 

  • Bröer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    Article  PubMed  Google Scholar 

  • Bröer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, Lang F, Bröer S (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 73:2184–2194

    PubMed  Google Scholar 

  • Bröer A, Wagner CA, Lang F, Bröer S (2000a) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349:787–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Bröer A, Wagner C, Lang F, Bröer S (2000b) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 346:705–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Bröer A, Albers A, Setiawan I, Edwards RH, Chaudhry FA, Wagner CA, Bröer S (2002) Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J Physiol 539:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Bröer A, Deitmer JW, Bröer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48:298–310

    Article  PubMed  Google Scholar 

  • Bröer S, Schneider H-P, Bröer A, Deitmer JW (2009) Mutation of asparagine 76 in the center of glutamine transporter SNAT3 modulates substrate-induced conductances and Na+ binding. J Biol Chem 284:25823–25831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brookes N (1992) Effect of intracellular glutamine on the uptake of large neutral amino acids in astrocytes: concentrative Na (+)-independent transport exhibits metastability. J Neurochem 59:227–235

    Article  CAS  PubMed  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120:89–94

    Article  CAS  PubMed  Google Scholar 

  • Brown MN, Mathews GC (2010) Activity- and age-dependent modulation of GABAergic neurotransmission by system A-mediated glutamine uptake. J Neurochem 114:909–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bungard CI, McGivan JD (2005) Identification of the promoter elements involved in the stimulation of ASCT2 expression by glutamine availability in HepG2 cells and the probable involvement of FXR/RXR dimers. Arch Biochem Biophys 443:53–59

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2000) Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems. Curr Opin Neurol 13:721–727

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    Article  CAS  PubMed  Google Scholar 

  • Chan K, Busque SM, Sailer M, Stoeger C, Bröer S, Daniel H, Rubio-Aliaga I, Wagner CA (2016) Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflügers Arch Eur J Physiol 468:213–227

    Article  CAS  Google Scholar 

  • Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–780

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Krizaj D, Larsson P, Reimer RJ, Wreden C, Storm-Mathisen J, Copenhagen D, Kavanaugh M, Edwards RH (2001) Coupled and uncoupled proton movement by amino acid transport system N. EMBO J 20:7041–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry FA, Reimer RJ, Edwards RH (2002a) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R, Kavanaugh M, Edwards RH (2002b) Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci 22:62–72

    CAS  PubMed  Google Scholar 

  • Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77

    CAS  PubMed  Google Scholar 

  • Christensen HN, Oxender DL, Liang M, Vatz KA (1965) The use of N-methylation to direct route of mediated transport of amino acids. J Biol Chem 240:3609–3616

    CAS  PubMed  Google Scholar 

  • Christensen HN, Liang M, Archer EG (1967) A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem 242:5237–5246

    CAS  PubMed  Google Scholar 

  • Collarini EJ, Oxender DL (1987) Mechanisms of transport of amino acids across membranes. Annu Rev Nutr 7:75–90

    Article  CAS  PubMed  Google Scholar 

  • Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Cubelos B, González-González IM, Giménez C, Zafra F (2005) Amino acid transporter SNAT5 localizes to glial cells in the rat brain. Glia 49:230–244

    Article  PubMed  Google Scholar 

  • Deitmer JW, Bröer A, Bröer S (2003) Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem 87:127–135

    Article  CAS  PubMed  Google Scholar 

  • Del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174

    Article  PubMed  CAS  Google Scholar 

  • Desjardins P, Du T, Jiang W, Peng L, Butterworth RF (2012) Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure: role of glutamine redefined. Neurochem Int 60:690–696

    Article  CAS  PubMed  Google Scholar 

  • Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    Article  PubMed  Google Scholar 

  • Erickson J (2016) Functional identification of an activity-induced, Ca2+-dependent glutamine transporter in hippocampal neurons. Trans Am Soc Neurochem 47:68

    Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Aschner M (2008) Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology 29:377–385

    Article  CAS  PubMed  Google Scholar 

  • Fei YJ, Sugawara M, Nakanishi T, Huang W, Wang H, Prasad PD, Leibach FH, Ganapathy V (2000) Primary structure genomic organization, and functional and electrogenic characteristics of human system N 1, a Na+- and H+ -coupled glutamine transporter. J Biol Chem 275:23707–23717

    Article  CAS  PubMed  Google Scholar 

  • Fort J, De La Ballina LR, Burghardt HE, Ferrer-Costa C, Turnay J, Ferrer-Orta C, Usón I et al (2007) The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J Biol Chem 282:31444–31452

    Article  CAS  PubMed  Google Scholar 

  • Fotiadis D, Kanai Y, Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158

    Article  CAS  PubMed  Google Scholar 

  • Franchi-Gazzola R, Gaccioli F, Bevilacqua E, Visigalli R, Dall’Asta V, Sala R, Varoqui H, Erickson JD, Gazzola GC, Bussolati O (2004) The synthesis of SNAT2 transporters is required for the hypertonic stimulation of system A transport activity. Biochim Biophys Acta Biomembr 1667:157–166

    Article  CAS  Google Scholar 

  • Fricke MN, Jones-Davis DM, Mathews GC (2007) Glutamine uptake by system A transporters maintains neurotransmitter GABA synthesis and inhibitory synaptic transmission. J Neurochem 102:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Gliddon CM, Shao Z, LeMaistre JL, Anderson CM (2009) Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem 108:372–383

    Article  CAS  PubMed  Google Scholar 

  • González-González IM, Cubelos B, Giménez C, Zafra F (2005) Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain. Neuroscience 130:61–73

    Article  PubMed  CAS  Google Scholar 

  • Grewal S, Defamie N, Zhang X, de Gois S, Shawki A, Mackenzie B, Chen C, Varoqui H, Erickson JD (2009) SNAT2 amino acid transporter is regulated by amino acids of the SLC6 γ-aminobutyric acid transporter subfamily in neocortical neurons and may play no role in delivering glutamine for glutamatergic transmission. J Biol Chem 284:11224–11236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewer C, Grabsch E (2004) New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak. J Physiol 557:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S (2005) Differential regulation of amino acid transporter SNAT3 by insulin in hepatocytes. J Biol Chem 280:26055–26062

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Roderick HL, Camacho P, Jiang JX (2000) Identification and characterization of an amino acid transporter expressed differentially in liver. Proc Natl Acad Sci U S A 97:3230–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S, Adan-Rice D, Leach RJ, Jiang JX (2001a) A novel human amino acid transporter, hNAT3: cDNA cloning, chromosomal mapping, genomic structure, expression, and functional characterization. Genomics 74:262–272

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Roderick HL, Camacho P, Jiang JX (2001b) Characterization of an N-system amino acid transporter expressed in retina and its involvement in glutamine transport. J Biol Chem 276:24137–24144

    Article  CAS  PubMed  Google Scholar 

  • Guma A, Testar X, Palacin M, Zorzano A (1988) Insulin-stimulated a-(methyl) aminoisobutyric acid uptake skeletal muscle protein synthesis. Biochem J 253:625–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hägglund MG, Sreedharan S, Nilsson VCO, Shaik JH, Almkvist IM, Bäcklin S, Wrange Ö, Fredriksson R (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 286:20500–20511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hägglund MG, Hellsten SV, Bagchi S, Philippot G, Löfqvist E, Nilsson VCO, Almkvist I et al (2015) Transport of l-glutamine, l-alanine, l-arginine and l-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS. J Mol Biol 427:1495–1512

    Article  PubMed  CAS  Google Scholar 

  • Hamdani EH, Gudbrandsen M, Bjørkmo M, Chaudhry FA (2012) The system N transporter SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors. Glia 60:1671–1683

    Article  Google Scholar 

  • Hamdi MM, Mutungi G (2011) Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism. J Physiol 589:3623–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka T, Huang W, Ling R, Prasad PD, Sugawara M, Leibach FH, Ganapathy V (2001) Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A. Biochim Biophys Acta Biomembr 1510:10–17

    Article  CAS  Google Scholar 

  • Hatanaka T, Hatanaka Y, Setou M (2006) Regulation of amino acid transporter ATA2 by ubiquitin ligase Nedd4-2. J Biol Chem 281:35922–35930

    Article  CAS  PubMed  Google Scholar 

  • Heckel T, Bröer A, Wiesinger H, Lang F, Bröer S (2003) Asymmetry of glutamine transporters in cultured neural cells. Neurochem Int 43:289–298

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 428:417–428

    Article  Google Scholar 

  • Hundal HS, Bilan PJ, Tsakiridis T, Marette A, Klip A (1994) Structural disruption of the trans-Golgi network does not interfere with the acute stimulation of glucose and amino acid uptake by insulin-like growth factor I in muscle cells. Biochem J 297:289–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde R, Christie GR, Litherland GJ, Hajduch E, Taylor PM, Hundal HS (2001) Subcellular localization and adaptive up-regulation of the system A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes. Biochem J 355:563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde R, Peyrollier K, Hundal HS (2002) Insulin promotes the cell surface recruitment of the SAT2/ATA2 system A amino acid transporter from an endosomal compartment in skeletal muscle cells. J Biol Chem 277:13628–13634

    Article  CAS  PubMed  Google Scholar 

  • Hyde R, Cwiklinski EL, MacAulay K, Taylor PM, Hundal HS (2007) Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem 282:19788–19798

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar AR, Norenberg MD (2016). Glutamine synthetase: role in neurological disorders. Adv Neurobiol 13:327–350 (in press)

    Google Scholar 

  • Jeitner T, Battaile K, Cooper AL (2015) Critical evaluation of the changes in glutamine synthetase activity in models of cerebral stroke. Neurochem Res 40:1–13

    Article  CAS  Google Scholar 

  • Jenstad M, Quazi AZ, Zilberter M, Haglerød C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, Haug FM, Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19:1092–1106

    Article  PubMed  Google Scholar 

  • Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S (2000) The 4F2hc/ LAT1 complex transports L-DOPA across the blood–brain barrier. Brain Res 879:115–121

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Segawa H, Miyamoto KI, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Fukasawa Y, Cha SH, Segawa H, Chairoungdua A, Kim DK, Matsuo H et al (2000) Transport properties of a system y+L neutral and basic amino acid transporter. Insights into the mechanisms of substrate recognition. J Biol Chem 275:20787–20793

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD (2006) Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain. J Neurochem 99:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Karinch A, Lin C (2002) Regulation of expression of the SN1 transporter during renal adaptation to chronic metabolic acidosis in rats. Am J Physiol Renal Physiol 283:1011–1019

    Article  Google Scholar 

  • Karinch AM, Lin CM, Meng Q, Pan M, Souba WW (2007) Glucocorticoids have a role in renal cortical expression of the SNAT3 glutamine transporter during chronic metabolic acidosis. Am J Physiol Renal Physiol 292:F448–F455

    Article  CAS  PubMed  Google Scholar 

  • Karlsen TV, Serck-Hanssen G (2002) Acute stimulation by IGF-I of amino acid transport system A in chromaffin cells depends on PI3 kinase activation and the electrochemical gradient of Na+. Ann NY Acad Sci 971:573–575

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi H, Yamazaki K, Takekuma Y, Ganapathy V, Sugawara M (2009) Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids 36:219–230

    Article  CAS  PubMed  Google Scholar 

  • Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL, Leibach FH, Ganapathy V (1996) Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 271:18657–18661

    Article  CAS  PubMed  Google Scholar 

  • Kilberg MS, Handlogten ME, Christensen HN (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem 255:4011–4019

    CAS  PubMed  Google Scholar 

  • Kilberg MS, Pan XY, Chen H, Leung-Pineda V, Pan Y (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25:59–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Cho SH, Chun HS, Lee SY, Ndou HE (2008) BCH, an inhibitor of system L amino acid transporters, induces apoptosis in cancer cells. Biol Pharm Bull 31:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Leke R, Bak L, Iversen P, Sørensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Schousboe A, Waagepetersen HS (2011a) Synthesis of neurotransmitter GABA via the neuronal tricarboxylic acid cycle is elevated in rats with liver cirrhosis consistent with a high GABAergic tone in chronic hepatic encephalopathy. J Neurochem 117:824–832

    Article  CAS  PubMed  Google Scholar 

  • Leke R, Bak LK, Anker M, Melø TM, Sørensen M, Keiding S, Vilstrup H et al (2011b) Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox Res 19:496–510

    Article  CAS  PubMed  Google Scholar 

  • Leke R, Escobar TDC, Rama Rao KV, Silveira TR, Norenberg MD, Schousboe A (2015) Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochem Int 39:605–611

    Article  CAS  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    Article  CAS  PubMed  Google Scholar 

  • Liang S-L, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26:8537–85348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling R, Bridges CC, Sugawara M, Fujita T, Leibach FH, Prasad PD, Ganapathy V (2001) Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta 1512:15–21

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Fontanals M (2003) The osmoregulatory and the amino acid-regulated responses of system A are mediated by different signal transduction pathways. J Gen Physiol 122:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch 447:784–795

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie B, Schäfer MKH, Erickson JD, Hediger MA, Weihe E, Varoqui H (2003) Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem 278:23720–23730

    Article  CAS  PubMed  Google Scholar 

  • Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291

    Article  CAS  PubMed  Google Scholar 

  • Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Kawasaki H, Moriguchi T, Gotoh Y, Nishida E (1995) Activation of protein kinase cascades by osmotic shock. J Biol Chem 270:12781–12786

    Article  CAS  PubMed  Google Scholar 

  • McDowell HE, Eyers PA, Hundal HS (1998) Regulation of system A amino acid transport in L6 rat skeletal muscle cells by insulin, chemical and hyperthermic stress. FEBS Lett 441:15–19

    Article  CAS  PubMed  Google Scholar 

  • McGivan JD, Bungard CI (2007) The transport of glutamine into mammalian cells. Front Biosci 12:874–882

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21:580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melone M, Quagliano F, Barbaresi P, Varoqui H, Erickson JD, Conti F (2004) Localization of the glutamine transporter SNAT1 in rat cerebral cortex and neighboring structures, with a note on its localization in human cortex. Cereb Cortex 14:562–574

    Article  PubMed  Google Scholar 

  • Melone M, Varoqui H, Erickson JD, Conti F (2006) Localization of the Na+-coupled neutral amino acid transporter 2 in the cerebral cortex. Neuroscience 140:281–292

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja TN, Brookes N (1996) Glutamine transport in mouse cerebral astrocytes. J Neurochem 66:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N (1996) Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res 3:17–24

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, Leibach FH, Prasad PD, Ganapathy V (2001a) Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Physiol Cell Physiol 281:C1757–C1768

    CAS  PubMed  Google Scholar 

  • Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME, Prasad PD, Ganapathy V (2001b) Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 281:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer LSH, Chaudhry FA (2013) Protein kinase C phosphorylates the system N glutamine transporter SN1 (Slc38a3) and regulates its membrane trafficking and degradation. Front Endocrinol (Lausanne) 4:138

    Google Scholar 

  • Nissen-Meyer LSH, Popescu MC, Hamdani EH, Chaudhry FA (2011) Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking. J Neurosci 31:6565–6575

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    Article  CAS  PubMed  Google Scholar 

  • Norenberg M, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Núñez B, Martínez de Mena R, Obregon MJ, Font-Llitjós M, Nunes V, Palacín M, Dumitrescu AM, Morte B, Bernal J (2014) Cerebral cortex hyperthyroidism of newborn Mct8-deficient mice transiently suppressed by Lat2 inactivation. PLoS One 9:e96915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oxender DL, Christensen HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238:3686–3699

    CAS  PubMed  Google Scholar 

  • Palacín M, Kanai Y (2004) The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch Eur J Physiol 447:490–494

    Article  CAS  Google Scholar 

  • Palii SS, Chen H, Kilberg MS (2004) Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element. J Biol Chem 279:3463–3471

    Article  CAS  PubMed  Google Scholar 

  • Palii SS, Thiaville MM, Pan Y-X, Zhong C, Kilberg MS (2006) Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) system A transporter gene. Biochem J 395:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmada M, Speil A, Jeyaraj S, Böhmer C, Lang F (2005) The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2. Biochem Biophys Res Commun 331:272–277

    Article  CAS  PubMed  Google Scholar 

  • Patel AJ, Hunt A (1985) Concentration of free amino acids in primary cultures of neurones and astrocytes. J Neurochem 44:1816–1821

    Article  CAS  PubMed  Google Scholar 

  • Patel AB, Rothman DL, Cline GW, Behar KL (2001) Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Res 919:207–220

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda M, Fernández E, Torrents D, Estévez R, López C, Camps M, Lloberas J, Zorzano A, Palacín M (1999) Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274:19738–19744

    Article  CAS  PubMed  Google Scholar 

  • Pingitore P, Pochini L, Scalise M, Galluccio M, Hedfalk K, Indiveri C (2013) Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris—functional and kinetic asymmetry revealed in proteoliposomes. Biochim Biophys Acta 1828:2238–2246

    Article  CAS  PubMed  Google Scholar 

  • Pochini L, Scalise M, Galluccio M, Indiveri C (2014) Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PN (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    Article  CAS  PubMed  Google Scholar 

  • Rajan DP, Kekuda R, Huang W, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (2000) Cloning and functional characterization of a Na(+)-independent, broad-specific neutral amino acid transporter from mammalian intestine. Biochim Biophys Acta 1463:6–14

    Article  CAS  PubMed  Google Scholar 

  • Rama Rao KV, Norenberg MD (2014) Glutamine in the pathogenesis of hepatic encephalopathy: the Trojan horse hypothesis revisited. Neurochem Res 39:593–598

    Article  CAS  PubMed  Google Scholar 

  • Reimer RJ, Chaudhry FA, Gray AT, Edwards RH (2000) Amino acid transport system A resembles system N in sequence but differs in mechanism. Proc Natl Acad Sci U S A 97:7715–7720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson S (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 980:972–980

    Article  Google Scholar 

  • Rodríguez A, Ortega A, Berumen LC, García-Alcocer MG, Giménez C, Zafra F (2014) Expression of the system N transporter (SNAT5/SN2) during development indicates its plausible role in glutamatergic neurotransmission. Neurochem In. 73:166–71

    Google Scholar 

  • Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954

    Article  CAS  PubMed  Google Scholar 

  • Scalise M, Pochini L, Panni S, Pingitore P, Hedfalk K, Indiveri C (2014) Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids 46:2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Schneider HP, Bröer S, Bröer A, Deitmer JW (2007) Heterologous expression of the glutamine transporter SNAT3 in Xenopus oocytes is associated with four modes of uncoupled transport. J Biol Chem 282:3788–3798

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Bakken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102. doi:10.3389/fendo.2013.00102

    Google Scholar 

  • Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014a) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Schousboe A, Waagepetersen HS, Leke R, Bak LK (2014b) Effects of hyperammonemia on brain energy metabolism: controversial findings in vivo and in vitro. Metab Brain Dis 29:913–917

    Article  CAS  PubMed  Google Scholar 

  • Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    Article  CAS  PubMed  Google Scholar 

  • Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadaño-Ferraz A, Fremeau RT (1993) Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268:15351–15355

    CAS  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Aschner M (2013) Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol 14:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidoryk-Węgrzynowicz M, Lee E, Albrecht J, Aschner M (2009) Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 110:822–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Lee E-S, Ni M, Aschner M (2010) Manganese-induced downregulation of astroglial glutamine transporter SNAT3 involves ubiquitin-mediated proteolytic system. Glia 58:1905–1912

    Article  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Lee E, Mingwei N, Aschner M (2011) Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway. Glia 59:1732–1743

    Article  PubMed  Google Scholar 

  • Skowrońska M, Zielińska M, Albrecht J, Fręśko I (2012) Upregulation of the heteromeric y+LAT2 transporter contributes to ammonia-induced increase of arginine uptake in rat cerebral cortical astrocytes. Neurochem Int 61:531–535

    Article  PubMed  CAS  Google Scholar 

  • Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA (2010) SAT1, a glutamine transporter, is preferentially expressed in GABAergic neurons. Front Neuroanat 4:1

    PubMed  PubMed Central  Google Scholar 

  • Su TZ, Campbell GW, Oxender DL (1997) Glutamine transport in cerebellar granule cells in culture. Brain Res 757:69–78

    Article  CAS  PubMed  Google Scholar 

  • Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M (2000) Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 275:16473–16477

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Nakanishi T, Fei YJ, Martindale RG, Ganapathy ME, Leibach FH, Ganapathy V (2000) Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta Biomembr 1509:7–13

    Article  CAS  Google Scholar 

  • Swain M, Butterworth RF, Blei AT (1992) Ammonia and related amino-acids in the pathogenesis of brain edema in acute ischemic liver-failure in rats. Hepatology 15:449–453

    Article  CAS  PubMed  Google Scholar 

  • Takanaga H, Tokuda N, Ohtsuki S, Hosoya K-I, Terasaki T (2002) ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol Pharmacol 61:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Tamarappoo BK, Raizada MK, Kilberg MS (1997) Identification of a system N-like Na(+)-dependent glutamine transport activity in rat brain neurons. J Neurochem 68:954–960

    Article  CAS  PubMed  Google Scholar 

  • Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K (2005) L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci 46:2522–2530

    Article  PubMed  Google Scholar 

  • Torrents D, Pineda M, Ferna E, Lloberas J, Shi Y, Zorzano A, Palacı M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. J Biol Chem 273:32437–32445

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    Article  CAS  PubMed  Google Scholar 

  • Varoqui H, Zhu H, Yao D, Ming H, Erickson JD (2000) Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049–4054

    Article  CAS  PubMed  Google Scholar 

  • Verrey F, Meier C, Rossier G, Kühn LC (2000) Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch Eur J Physiol 440:503–512

    Article  CAS  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch Eur J Physiol 447:532–542

    Article  CAS  Google Scholar 

  • Verrey F, Singer D, Ramadan T, Vuille-Dit-Bille RN, Mariotta L, Camargo SMR (2009) Kidney amino acid transport. Pflugers Arch Eur J Physiol 458:53–60

    Article  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A (2001) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C magnetic resonance spectroscopy. J Neurosci Res 63:347–355

    Article  CAS  PubMed  Google Scholar 

  • Walton HS, Dodd PR (2007) Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem Int 50:1052–1066

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang W, Sugawara M, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (2000) Cloning and functional expression of ATA1, a subtype of amino acid transporter A, from human placenta. Biochem Biophys Res Commun 273:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • Weiss MD, Derazi S, Rossignol C, Varoqui H, Erickson JD, Kilberg MS, Anderson KJ (2003) Ontogeny of the neutral amino acid transporter SAT1/ATA1 in rat brain. Dev Brain Res 143:151–159

    Article  CAS  Google Scholar 

  • White LR, Gårseth M, Aasly J, Sonnewald U (2004) Cerebrospinal fluid from patients with dementia contains increased amounts of an unknown factor. J Neurosci Res 78:297–301

    Article  CAS  PubMed  Google Scholar 

  • Wittmann G, Mohácsik P, Balkhi MY, Gereben B, Lechan RM (2015) Endotoxin-induced inflammation down-regulates l-type amino acid transporter 1 (LAT1) expression at the blood–brain barrier of male rats and mice. Fluids Barriers CNS 12:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu GY, McAdoo DJ, Hughes MG, Robak G, de Castro R (1998) Considerations in the determination by microdialysis of resting extracellular amino acid concentrations and release upon spinal cord injury. Neuroscience 86:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Mackenzie B, Ming H, Varoqui H, Zhu H, Hediger MA, Erickson JD (2000) A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem 275:22790–22797

    Article  CAS  PubMed  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  CAS  PubMed  Google Scholar 

  • Zander CB, Albers T, Grewer C (2013) Voltage-dependent processes in the electroneutral amino acid exchanger ASCT2. J Gen Physiol 141:659–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Gameiro A, Grewer C (2008) Highly conserved asparagine 82 controls the interaction of Na+ with the sodium-coupled neutral amino acid transporter SNAT2. J Biol Chem 283:12284–12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler TR, Bazargan N, Leader LM, Martindale RG (2000) Glutamine and the gastrointestinal tract. Curr Opin Clin Nutr Metab Care 3:355–362

    Article  CAS  PubMed  Google Scholar 

  • Zielińska M, Ruszkiewicz J, Hilgier W, Fresko I, Albrecht J (2011) Hyperammonemia increases the expression and activity of the glutamine/arginine transporter y+LAT2 in rat cerebral cortex: implications for the nitric oxide/cGMP pathway. Neurochem Int 58:190–195

    Article  PubMed  CAS  Google Scholar 

  • Zielińska M, Popek M, Albrecht J (2014) Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: an emerging concept. Neurochem Res 39:599–604

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Leke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leke, R., Schousboe, A. (2016). The Glutamine Transporters and Their Role in the Glutamate/GABA–Glutamine Cycle. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_8

Download citation

Publish with us

Policies and ethics