Skip to main content

Dysregulation of Glutamate Cycling Mediates Methylmercury-Induced Neurotoxicity

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

To examine the toxicological implications of glutamate, this chapter will focus specifically on its impact in the brain. More explicitly, it will illustrate the role glutamate plays in mediating methylmercury (MeHg)-induced neurotoxicity. In this chapter, one intends to highlight the processes that occur prior to glutamate-stimulated excitotoxicity and subsequent neurodegeneration. As such, it will emphasize three main routes by which MeHg alters glutamate homeostasis. It is essential to recognize that these effects are not mutually exclusive, and that they synergistically influence glutamate dysregulation. Furthermore, the consequences of MeHg exposure will be presented here as a direct pathway; however, it must be noted these effects occur simultaneously. First, glutamate uptake will be reviewed emphasizing the function of astrocytes. Next, the induction of oxidative stress by MeHg exposure will be discussed. This process has a two-fold effect on glutamate homeostasis by (1) inhibiting extracellular glutamate uptake and (2) altering transcription of genes vital to glutamate cycling. Finally, the impact glutamate dysregulation has on glutathione synthesis will be examined. Although this chapter centers on the link between glutamate and MeHg toxicity, it is imperative that the reader acknowledges the processes discussed here can be extended to any pro-oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JW, Mutkus LA, Aschner M (2001a) Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 902(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Allen JW, Shanker G, Aschner M (2001b) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894(1):131–140

    Article  CAS  PubMed  Google Scholar 

  • Amonpatumrat S, Sakurai H, Wiriyasermkul P, Khunweeraphong N, Nagamori S, Tanaka H, Piyachaturawat P, Kanai Y (2008) L-glutamate enhances methylmercury toxicity by synergistically increasing oxidative stress. J Pharmacol Sci 108(3):280–289

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Eberle NB, Miller K, Kimelberg HK (1990) Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling. Brain Res 530(2):245–250

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Du YL, Gannon M, Kimelberg HK (1993) Methylmercury-induced alterations in excitatory amino acid transport in rat primary astrocyte cultures. Brain Res 602(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261(5):2256–2263

    CAS  PubMed  Google Scholar 

  • Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255(6):2372–2376

    CAS  PubMed  Google Scholar 

  • Barbour B, Szatkowski M, Ingledew N, Attwell D (1989) Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342(6252):918–920. doi:10.1038/342918a0

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91. doi:10.3389/fnana.2015.00091

    PubMed  PubMed Central  Google Scholar 

  • Brookes N, Kristt DA (1989) Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem 53(4):1228–1237

    Article  CAS  PubMed  Google Scholar 

  • Charleston JS, Body RL, Mottet NK, Vahter ME, Burbacher TM (1995) Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol Appl Pharmacol 132(2):325–333. doi:10.1006/taap.1995.1114

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55(6):2091–2097

    Article  CAS  PubMed  Google Scholar 

  • Cocco T, Di Paola M, Papa S, Lorusso M (1999) Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med 27(1–2):51–59

    Article  CAS  PubMed  Google Scholar 

  • Davidson PW, Jean Sloane R, Myers GJ, Hansen ON, Huang LS, Georger LA, Cox C, Thurston SW, Shamlaye CF, Clarkson TW (2008) Association between prenatal exposure to methylmercury and visuospatial ability at 10.7 years in the Seychelles child development study. Neurotoxicology 29(3):453–459. doi:10.1016/j.neuro.2008.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson PW, Leste A, Benstrong E, Burns CM, Valentin J, Sloane-Reeves J, Huang LS, Miller WA, Gunzler D, van Wijngaarden E, Watson GE, Zareba G, Shamlaye CF, Myers GJ (2010) Fish consumption, mercury exposure, and their associations with scholastic achievement in the Seychelles Child Development Study. Neurotoxicology 31(5):439–447. doi:10.1016/j.neuro.2010.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D, Watson G, van Wijngaarden E, Zareba G, Klein JD, Clarkson TW, Strain JJ, Myers GJ (2011) Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32(6):711–717. doi:10.1016/j.neuro.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P (2006) Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 28(5):536–547. doi:10.1016/j.ntt.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci 19(23):10193–10200

    CAS  PubMed  Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15(10):6377–6388

    CAS  PubMed  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336(6194):68–70. doi:10.1038/336068a0

    Article  CAS  PubMed  Google Scholar 

  • Eto K (2000) Minamata disease. Neuropathology 20(Suppl):S14–S19

    Article  PubMed  Google Scholar 

  • Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy AC, Marques MR, Dafre AL, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47(4):449–457. doi:10.1016/j.freeradbiomed.2009.05.013

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428

    Article  CAS  PubMed  Google Scholar 

  • Hamberger A, Nystrom B (1984) Extra- and intracellular amino acids in the hippocampus during development of hepatic encephalopathy. Neurochem Res 9(9):1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. doi:10.3109/10408449509089885

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774. doi:10.1074/jbc.M206911200

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201. doi:10.1016/j.brainres.2007.01.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Huang Z, Chan JY, Zhang DD (2009) Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicol Appl Pharmacol 240(1):8–14. doi:10.1016/j.taap.2009.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YN, Yu YV, Gundemir S, Jo C, Cui M, Tieu K, Johnson GV (2013) Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One 8(3):e57932. doi:10.1371/journal.pone.0057932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139. doi:10.1128/MCB.24.16.7130-7139.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26(1):221–229. doi:10.1128/MCB.26.1.221-229.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24(5):1101–1112. doi:10.1523/JNEUROSCI.3817-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Kurzatkowski DM, Trombetta LD (2013) Maneb causes pro-oxidant effects in the hippocampus of Nrf2 knockout mice. Environ Toxicol Pharmacol 36(2):427–436. doi:10.1016/j.etap.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853

    CAS  PubMed  Google Scholar 

  • Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, Ji X, Chen W, Xue M, Wei J (2015) The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longev 2015:352723. doi:10.1155/2015/352723

    PubMed  PubMed Central  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59. doi:10.1016/j.mam.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Lundy DF, McBean GJ (1996) Inhibition of the high-affinity uptake of D-[3H]aspartate in rate by L-alpha-aminoadipate and arachidonic acid. J Neurol Sci 139(Suppl):1–9

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Yasutake A, Marumoto M, Hirayama K (2011) Methylmercury inhibits electron transport chain activity and induces cytochrome c release in cerebellum mitochondria. J Toxicol Sci 36(3):253–259

    Article  CAS  PubMed  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2(6):1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4(6):1624–1633

    CAS  PubMed  Google Scholar 

  • Mutkus L, Aschner JL, Syversen T, Aschner M (2005) Methylmercury alters the in vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells. Biol Trace Elem Res 107(3):231–245. doi:10.1385/BTER:107:3:231

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Li X, Yin Z, Jiang H, Sidoryk-Wegrzynowicz M, Milatovic D, Cai J, Aschner M (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116(2):590–603. doi:10.1093/toxsci/kfq126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Li X, Yin Z, Sidoryk-Wegrzynowicz M, Jiang H, Farina M, Rocha JB, Syversen T, Aschner M (2011) Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 59(5):810–820. doi:10.1002/glia.21153

    Article  PubMed  PubMed Central  Google Scholar 

  • Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44. doi:10.1016/j.freeradbiomed.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  • Palomo GM, Manfredi G (2015) Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 1607:36–46. doi:10.1016/j.brainres.2014.09.065

    Article  CAS  PubMed  Google Scholar 

  • Qu H, Syversen T, Aschner M, Sonnewald U (2003) Effect of methylmercury on glutamate metabolism in cerebellar astrocytes in culture. Neurochem Int 43(4–5):411–416

    Article  CAS  PubMed  Google Scholar 

  • Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15(5 Pt 1):3318–3327

    CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61(5):1672–1676

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277(47):44765–44771. doi:10.1074/jbc.M208704200

    Article  CAS  PubMed  Google Scholar 

  • Shanker G, Aschner M (2003) Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Brain Res Mol Brain Res 110(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Shanker G, Allen JW, Mutkus LA, Aschner M (2001) Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Res 914(1–2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Shanker G, Mutkus LA, Walker SJ, Aschner M (2002) Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Brain Res Mol Brain Res 106(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Shanker G, Aschner JL, Syversen T, Aschner M (2004) Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 128(1):48–57. doi:10.1016/j.molbrainres.2004.05.022

    Article  CAS  PubMed  Google Scholar 

  • Shanker G, Syversen T, Aschner JL, Aschner M (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res 137(1–2):11–22. doi:10.1016/j.molbrainres.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  • Sorg O, Horn TF, Yu N, Gruol DL, Bloom FE (1997) Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes. Mol Med 3(7):431–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stella N, Tence M, Glowinski J, Premont J (1994) Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci 14(2):568–575

    CAS  PubMed  Google Scholar 

  • Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–334

    Article  CAS  PubMed  Google Scholar 

  • Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28(50):13574–13581. doi:10.1523/JNEUROSCI.4099-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Jiang H, Yin Z, Aschner M, Cai J (2009) Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci 107(1):135–143. doi:10.1093/toxsci/kfn201

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131(1):1–10. doi:10.1016/j.brainres.2006.10.070

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Albrecht J, Syversen T, Jiang H, Summar M, Rocha JB, Farina M, Aschner M (2009) Comparison of alterations in amino acids content in cultured astrocytes or neurons exposed to methylmercury separately or in co-culture. Neurochem Int 55(1–3):136–142. doi:10.1016/j.neuint.2009.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudkoff M, Pleasure D, Cregar L, Lin ZP, Nissim I, Stern J, Nissim I (1990) Glutathione turnover in cultured astrocytes: studies with [15N]glutamate. J Neurochem 55(1):137–145

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121(8):799–817. doi:10.1007/s00702-014-1180-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The review was supported in part by NIH grants from the National Institute of Environmental Health Sciences ES R01 07331 and R01 ES 020852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Culbreth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Culbreth, M., Aschner, M. (2016). Dysregulation of Glutamate Cycling Mediates Methylmercury-Induced Neurotoxicity. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_11

Download citation

Publish with us

Policies and ethics