Skip to main content

Oligodendrocytes: Development, Physiology and Glucose Metabolism

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

The glutamate–glutamine cycle is an outstanding example of how essential neuronal–glial interactions are for brain function. For several decades, this and other metabolic cycles in the brain have only included neurons and astrocytes but not oligodendrocytes, the myelinating cells of the central nervous system (CNS). Recent data revealed that oligodendrocytes are highly metabolically active cells in the brain and, therefore, should not be ignored. Using 13C-labelled glucose in combination with nuclear magnetic resonance spectroscopy (MRS) and/or mass spectrometry (MS) it is possible to characterize metabolic functions in primary oligodendrocyte cultures. Mature rat oligodendrocytes avidly metabolize glucose in the cytosol and pyruvate derived from glucose in mitochondria. Moreover, they seem to have the ability of performing anaplerosis from pyruvate, which might enable them to synthesize metabolites de novo and transfer them to neighbouring cells. All these original findings highlight the importance of investigating oligodendrocyte metabolism separately from that of astrocytes and neurons to be able to discern the roles played by the individual partners. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present book chapter provides some background on oligodendrocyte biology and physiology and summarizes the not very extensive information published on glucose metabolism in oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CNP:

20,30-cyclicnucleotide 30-phosphodiesterase

CNS:

Central nervous system

Fructose-6P:

Fructose-6-phosphate

GA3P:

Glyceraldehyde-3-phosphate

GABA:

γ-Aminobutyric acid

MAG:

Myelin antigen glycoprotein

MBP:

Myelin basic protein

MOG:

Myelin oligodendrocyte glycoprotein

MRS:

Magnetic resonance spectroscopy

MS:

Multiple sclerosis

OLs:

Oligodendrocytes

OPCs:

Oligodendrocyte precursor cells

PC:

Pyruvate carboxylase

PDGFR-α:

Platelet-derived growth factor receptor alpha

PEPCK:

Phosphoenolpyruvate carboxy kinase

PK:

Pyruvate kinase

PLP:

Proteolipid protein

PPP:

Pentose phosphate pathway

T3:

Triiodothyronine/thyroid hormone 3

TBI:

Traumatic brain injury

TCA:

Tricarboxylic acid

References

  • Almeida A, Delgado-Esteban M, Bolanos JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81(2):207–217

    Article  CAS  PubMed  Google Scholar 

  • Amaral AI, Teixeira AP, Martens S, Bernal V, Sousa MFQ, Alves PM (2010) Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. J Neurochem 113(3):735–748

    Article  CAS  PubMed  Google Scholar 

  • Amaral AI, Teixeira AP, Haakonsen BI, Sonnewald U, Alves AM (2011a) A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and 13-C-labeled glucose. Front Neuroenerg 3(5)

    Google Scholar 

  • Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011b) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89(5):700–710

    Article  CAS  PubMed  Google Scholar 

  • Amaral AI, Meisingset TW, Kotter MR, Sonnewald U (2013) Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front Endocrinol (Lausanne) 4:54

    CAS  Google Scholar 

  • Amaral AI, Hadera MG, Tavares JM, Kotter MR, Sonnewald U (2016) Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 64(1):21–34

    Article  PubMed  Google Scholar 

  • Ariyannur PS, Moffett JR, Madhavarao CN, Arun P, Vishnu N, Jacobowitz DM, Hallows WC, Denu JM, Namboodiri AM (2010) Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J Comp Neurol 518(15):2952–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA (2015) Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology. doi:10.1016/j.neuropharm.2015.04.029. [Epub ahead of print]

    Google Scholar 

  • Bakiri Y, Hamilton NB, Karadottir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56(2):233–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Banki K, Colombo E, Sia F, Halladay D, Mattson DH, Tatum AH, Massa PT, Phillips PE, Perl A (1994) Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. J Exp Med 180(5):1649–1663

    Article  CAS  PubMed  Google Scholar 

  • Barres BA, Lazar MA, Raff MC (1994) A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120(5):1097–1108

    CAS  PubMed  Google Scholar 

  • Baslow MH, Guilfoyle DN (2006) Functions of N-acetylaspartate and N-acetylaspartyl-glutamate in brain—evidence of a role in maintenance of higher brain integrative activities of information processing and cognition. In: Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri AMA (eds) N-acetylaspartate: a unique neuronal molecule in the central nervous system, vol 576. Springer, Bethesda, MD, pp 95–112

    Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405(6783):187–191

    Article  CAS  PubMed  Google Scholar 

  • Bolanos JP, Almeida A (2010) The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62(1):14–18

    CAS  PubMed  Google Scholar 

  • Brekke EM, Walls AB, Schousboe A, Waagepetersen HS, Sonnewald U (2012) Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. J Cereb Blood Flow Metab 32(9):1788–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46(3):283–301

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene expression. Mol Neurobiol 2(1):41–89

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10(4):729–740

    Article  CAS  PubMed  Google Scholar 

  • Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265(22):12916–12926

    CAS  PubMed  Google Scholar 

  • Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64(5):2312–2318

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78(4):736–745

    Article  CAS  PubMed  Google Scholar 

  • Crang AJ, Gilson J, Blakemore WF (1998) The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol 27(7):541–553

    Article  CAS  PubMed  Google Scholar 

  • Crawford AH, Stockley JH, Tripathi RB, Richardson WD, Franklin RJ (2014) Oligodendrocyte progenitors: adult stem cells of the central nervous system? Exp Neurol 260:50–55

    Article  CAS  PubMed  Google Scholar 

  • Cruz F, Scott SR, Barroso I, Santisteban P, Cerdan S (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J Neurochem 70(6):2613–2619

    Article  CAS  PubMed  Google Scholar 

  • Douvaras P, Fossati V (2015) Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc 10(8):1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Duchala CS, Asotra K, Macklin WB (1995) Expression of cell surface markers and myelin proteins in cultured oligodendrocytes from neonatal brain of rat and mouse: a comparative study. Dev Neurosci 17(2):70–80

    Article  CAS  PubMed  Google Scholar 

  • Dusick JR, Glenn TC, Lee WN, Vespa PM, Kelly DF, Lee SM, Hovda DA, Martin NA (2007) Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. J Cereb Blood Flow Metab 27(9):1593–1602

    Article  CAS  PubMed  Google Scholar 

  • Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18(4):551–561

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJ (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225(1):18–23

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH (2011) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:21–43

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant C, Raff MC (1986) The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature 323(6086):335–338

    Article  CAS  PubMed  Google Scholar 

  • Francis JS, Strande L, Markov V, Leone P (2012) Aspartoacylase supports oxidative energy metabolism during myelination. J Cereb Blood Flow Metab 32(9):1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    Article  CAS  PubMed  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    PubMed  PubMed Central  Google Scholar 

  • Galvao RP, Kasina A, McNeill RS, Harbin JE, Foreman O, Verhaak RG, Nishiyama A, Miller CR, Zong H (2014) Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci U S A 111(40):E4214–E4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69(6):2312–2325

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Nogales P, Almeida A, Bolanos JP (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278(2):864–874

    Article  CAS  PubMed  Google Scholar 

  • Gautier HO, Evans KA, Volbracht K, James R, Sitnikov S, Lundgaard I, James F, Lao-Peregrin C, Reynolds R, Franklin RJ, Karadottir RT (2015) Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun 6:8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goddard DR, Berry M, Butt AM (1999) In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-I on oligodendrocyte development and myelination in the central nervous system. J Neurosci Res 57(1):74–85

    Article  CAS  PubMed  Google Scholar 

  • Gorris R, Fischer J, Erwes KL, Kesavan J, Peterson DA, Alexander M, Nothen MM, Peitz M, Quandel T, Karus M, Brustle O (2015) Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes. Glia 63(12):2152–2167

    Article  PubMed  Google Scholar 

  • Griffiths I, Klugmann M, Anderson T, Thomson C, Vouyiouklis D, Nave KA (1998) Current concepts of PLP and its role in the nervous system. Microsc Res Tech 41(5):344–358

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci 30(36):12036–12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberg A, Qu H, Bakken IJ, Sande LM, White LR, Haraldseth O, Unsgard G, Aasly J, Sonnewald U (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci 20(4–5):389–398

    CAS  PubMed  Google Scholar 

  • Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18(5):683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirrlinger J, Nave KA (2014) Adapting brain metabolism to myelination and long-range signal transduction. Glia 62(11):1749–1761

    Article  PubMed  Google Scholar 

  • Huang JK, Phillips GR, Roth AD, Pedraza L, Shan W, Belkaid W, Mi S, Fex-Svenningsen A, Florens L, Yates JR III, Colman DR (2005) Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310(5755):1813–1817

    Article  CAS  PubMed  Google Scholar 

  • Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karadottir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145(4):1426–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karadottir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11(4):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289(5485):1754–1757

    Article  CAS  PubMed  Google Scholar 

  • Kunnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6(4):264–277

    Article  CAS  PubMed  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (2010) Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 225(1):2–8

    Article  PubMed  Google Scholar 

  • Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012a) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9(9):917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012b) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Lewis KM, Petritsch C (2013) Asymmetric cell division: implications for glioma development and treatment. Transl Neurosci 4(4):484–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HO, Franklin RJ, Charles F-C, Attwell D, Karadottir RT (2013) Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 11(12):e1001743

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyons SA, Kettenmann H (1998) Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro. J Cereb Blood Flow Metab 18(5):521–530

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20(12):1491–1501

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Tildon JT, Zielke CL, Hopkins IB (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36(4–5):451–459

    Article  CAS  PubMed  Google Scholar 

  • McKenna M, Gruetter R, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy metabolism of the brain. In: Brady S, Siegel G, Albers RW, Price D (eds) Basic neurochemistry: principles of molecular, cellular, and medical neurobiology. Elsevier Academic, Oxford, pp 200–231

    Chapter  Google Scholar 

  • Melo TM, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25(10):1254–1264

    Article  PubMed  CAS  Google Scholar 

  • Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18(5):628–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miron VE, Kuhlmann T, Antel JP (2011) Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 1812(2):184–193

    Article  CAS  PubMed  Google Scholar 

  • Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81(2):89–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffett JR, Arun P, Ariyannur PS, Garbern JY, Jacobowitz DM, Namboodiri AM (2011) Extensive aspartoacylase expression in the rat central nervous system. Glia 59(10):1414–1434

    Article  PubMed  PubMed Central  Google Scholar 

  • Morken TS, Brekke E, Haberg A, Wideroe M, Brubakk AM, Sonnewald U (2014) Altered astrocyte-neuronal interactions after hypoxia-ischemia in the neonatal brain in female and male rats. Stroke 45(9):2777–2785

    Article  PubMed  Google Scholar 

  • Muir D, Berl S, Clarke DD (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res 380(2):336–340

    Article  CAS  PubMed  Google Scholar 

  • Murin R, Cesar M, Kowtharapu BS, Verleysdonk S, Hamprecht B (2009) Expression of pyruvate carboxylase in cultured oligodendroglial, microglial and ependymal cells. Neurochem Res 34(3):480–489

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010a) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010b) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiatry 71(5):582–584

    Article  PubMed  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  PubMed  Google Scholar 

  • Nilsen LH, Witter MP, Sonnewald U (2014) Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J Cereb Blood Flow Metab 34(5):906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85(15):3318–3325

    Article  CAS  PubMed  Google Scholar 

  • Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22(5):717–724

    Article  CAS  PubMed  Google Scholar 

  • Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5(3–4):57–67

    Article  PubMed  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303(5916):390–396

    Article  CAS  PubMed  Google Scholar 

  • Richardson WD, Pringle NP, Yu WP, Hall AC (1997) Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev Neurosci 19(1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Richardson WD, Young KM, Tripathi RB, McKenzie I (2011) NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70(4):661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31(2):538–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5(5):409–419

    Article  CAS  PubMed  Google Scholar 

  • Sa Santos S, Sonnewald U, Carrondo MJ, Alves PM (2011) The role of glia in neuronal recovery following anoxia: in vitro evidence of neuronal adaptation. Neurochem Int 58(6):665–675

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Abarca LI, Tabernero A, Medina JM (2001) Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36(3):321–329

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld R, Wong A, Silva J, Li M, Itoh A, Horiuchi M, Itoh T, Pleasure D, Cortopassi G (2010) Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion 10(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367

    Article  CAS  PubMed  Google Scholar 

  • Siegel GJ, Albers RW (2006) Basic neurochemistry: molecular, cellular, and medical aspects. Elsevier Academic, San Diego

    Google Scholar 

  • Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C, Verkleij D, Goebbels S, Edgar J, Merkler D, Lyons DA, Nave KA, Simons M (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156(1–2):277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation—where do all the carbons go? J Neurochem 131(4):399–406

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Rae C (2010) Pyruvate carboxylation in different model systems studied by 13C MRS. Neurochem Res 35(12):1916–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnewald U, Westergaard N, Hassel B, Muller TB, Unsgard G, Fonnum F, Hertz L, Schousboe A, Petersen SB (1993) NMR spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15(3–5):351–358

    CAS  PubMed  Google Scholar 

  • Stacpoole SR, Spitzer S, Bilican B, Compston A, Karadottir R, Chandran S, Franklin RJ (2013) High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Rep 1(5):437–450

    Article  CAS  Google Scholar 

  • Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-Ringler J, Phillips J, Siu J, Lim DA, Vandenberg S, Stallcup W, Berger MS, Bergers G, Weiss WA, Petritsch C (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20(3):328–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes JE, Lopes-Cardozo M, Van Den Bergh SG (1986) Relationship between the pentose-phosphate pathway and the de novo synthesis of fatty acids and cholesterol in oligodendrocyte-enriched glial cultures. Neurochem Int 8(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K, Wanaka A (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86(16):3494–3502

    Article  CAS  PubMed  Google Scholar 

  • Trajkovic K, Dhaunchak AS, Goncalves JT, Wenzel D, Schneider A, Bunt G, Nave KA, Simons M (2006) Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol 172(6):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RB, Clarke LE, Burzomato V, Kessaris N, Anderson PN, Attwell D, Richardson WD (2011) Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci 31(18):6809–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45(1):55–67

    Article  CAS  PubMed  Google Scholar 

  • van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123(2):211–218

    Article  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2001) Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia 35(3):246–252

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waxman SG, Ritchie JM (1993) Molecular dissection of the myelinated axon. Ann Neurol 33(2):121–136

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Rivkees SA (2006) Hypoglycemia influences oligodendrocyte development and myelin formation. Neuroreport 17(1):55–59

    Article  PubMed  Google Scholar 

  • Ye P, Carson J, D’Ercole AJ (1995) In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci 15(11):7344–7356

    CAS  PubMed  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590

    Article  CAS  PubMed  Google Scholar 

  • Ziabreva I, Campbell G, Rist J, Zambonin J, Rorbach J, Wydro MM, Lassmann H, Franklin RJ, Mahad D (2010) Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 58(15):1827–1837

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The preparation of this book chapter was supported by funding from the UK Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Sonnewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amaral, A.I., Tavares, J.M., Sonnewald, U., Kotter, M.R.N. (2016). Oligodendrocytes: Development, Physiology and Glucose Metabolism. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_10

Download citation

Publish with us

Policies and ethics