Skip to main content

Introduction to the Glutamate–Glutamine Cycle

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

The term ‘glutamate–glutamine cycle’ was coined several decades ago based on the observation that using certain 14C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.

This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to chloride conductance. Proc Natl Acad Sci U S A 94:4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachelard H, Badar-Goffer R, Morris P, Thatcher N (1994) Magnetic resonance spectroscopy studies on Ca2+, Zn2+ and energy metabolism in superfused brain slices. Biochem Soc Trans 22:988–991

    Article  CAS  PubMed  Google Scholar 

  • Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB (2012) The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int 61:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berl S, Clarke DD (1969) Compartmentation of amino acid metabolism. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 447–472

    Chapter  Google Scholar 

  • Berl S, Nicklas WJ, Clarke DD (1968) Compartmentation of glutamic acid metabolism in brain slices. J Neurochem 15:131–140

    Article  CAS  PubMed  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  CAS  PubMed  Google Scholar 

  • Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptic glial localization for the Na+, K+-ATPase α2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 12:515–525

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJL (1988) L-Glutamate (2-oxoglutarate) aminotransferases. In: Kvamme E (ed) Glutamine and glutamate in mammals, vol 1. CRC, Boca Raton, FL, pp 123–152

    Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC (1959) Chemical excitation of spinal neurones. Nature 183:611–612

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Pines G, Kanner BI (1990) Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29:6734–6740

    Article  CAS  PubMed  Google Scholar 

  • Drejer J, Meier E, Schousboe A (1983) Novel neuron-related regulatory mechanisms for astrocytic glutamate and GABA high affinity uptake. Neurosci Lett 37:301–306

    Article  CAS  PubMed  Google Scholar 

  • Ehrhart-Bornstein M, Treiman M, Hansen GH, Schousboe A, Thorn NA, Frandsen A (1991) Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons. Int J Dev Neurosci 9:463–471

    Article  CAS  PubMed  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  CAS  PubMed  Google Scholar 

  • Farinelli SE, Nicklas WJ (1992) Glutamate metabolism in rat cortical astrocyte cultures. J Neurochem 58:1905–1915

    Article  CAS  PubMed  Google Scholar 

  • Garfinkel D (1966) A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, Krebs cycle and related metabolites. J Biol Chem 241:3918–3929

    CAS  PubMed  Google Scholar 

  • Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    CAS  PubMed  Google Scholar 

  • Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    Article  CAS  PubMed  Google Scholar 

  • Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertz L (1979) Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13:277–323

    Article  CAS  PubMed  Google Scholar 

  • Illarionova NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na, K-ATPase alpha1 and alpha2 isoforms in the support of astrocyte glutamate uptake. PLoS One 9:e98469

    Article  PubMed  Google Scholar 

  • Jackson JG, O’Donnell JC, Takano H, Coulter DA, Robinson MB (2014) Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters. J Neurosci 34:1613–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JG, O’Donnell JC, Krizman E, Robinson MB (2015) Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1 mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. J Neurosci Res 93:999–1083

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen RA, Sihra TS, Nicholls DG (1987) Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta 930:173–178

    Article  CAS  PubMed  Google Scholar 

  • Larrabee MG (1992) Extracellular intermediates of glucose metabolism: fluxes of endogenous lactate and alanine through extracellular pools in embryonic sympathetic ganglia. J Neurochem 59:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Levy LM (2002) Structure, function and regulation of glutamate transporters. In: Egebjerg J, Schousboe A, Krogsgaard-Larsen P (eds) Glutamate and GABA receptors and transporters: structure, function and pharmacology. Taylor and Francis, London, pp 307–336

    Google Scholar 

  • Matos M, Augusto E, Agostinho P, Cunha RA, Chen JF (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-alpha2 controlling glutamate uptake in astrocytes. J Neurosci 33:18492–18502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Hopkins IB (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci 16:291–300

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG (1989) Release of glutamate, aspartate and gamma-aminobutyric acid from isolated terminals. J Neurochem 52:331–341

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467

    Article  CAS  PubMed  Google Scholar 

  • Roberts RC, Roche JK, McCullumsmith RE (2014) Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience 77:522–540

    Article  Google Scholar 

  • Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  CAS  PubMed  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M, Kalandaze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    CAS  PubMed  Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A (2012) Studies of brain metabolism: a historical perspective. Adv Neurobiol 4:909–920

    Article  Google Scholar 

  • Schousboe A, Westergaard N, Hertz L (1993a) Neuronal-astrocytic interactions in glutamate metabolism. Biochem Soc Trans 21:49–53

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993b) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    Article  CAS  PubMed  Google Scholar 

  • Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Storck T, Schulte S, Hofman K, Stoffel W (1992) Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89:10955–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    CAS  PubMed  Google Scholar 

  • van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    Article  PubMed  Google Scholar 

  • Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    Article  CAS  PubMed  Google Scholar 

  • Waniewski RA, Martin DL (1986) Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J Neurochem 47:304–313

    Article  CAS  PubMed  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Ann Rev Pharmacol Toxicol 21:165–204

    Article  CAS  Google Scholar 

  • Yu AC, Schousboe A, Hertz L (1982) Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J Neurochem 39:954–960

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Hummeler K, Medow M, Pleasure D (1986) Utilization of [15N]glutamate by cultured astrocytes. Biochem J 234:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudkoff M, Daikhin Y, Lin ZP, Nissim I, Stern J, Pleasure D (1994a) Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem 62:1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nelson D, Daikhin Y, Erecinska M (1994b) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269:27414–27420

    CAS  PubMed  Google Scholar 

  • Zielke HR, Tildon JT, Landry ME, Max SR (1990) Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes. Neurochem Res 15:1115–1122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Sonnewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sonnewald, U., Schousboe, A. (2016). Introduction to the Glutamate–Glutamine Cycle. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_1

Download citation

Publish with us

Policies and ethics