Skip to main content

Interventions and Management of Complications of Osteoporosis

  • Chapter
  • First Online:
Osteoporosis Rehabilitation

Abstract

The treatment and management of osteoporosis has undergone a major transformation in recent decades. Increasing knowledge about the underlying molecular mechanisms of osteoporosis has led to significant advances in surgical techniques as well as pharmacologic and nonpharmacologic approaches aimed at improving bone density, reducing fracture risk, alleviating pain, and enhancing the quality of life. Standard surgical intervention has advanced, and preventive intervention is offered for patients with impending fractures or for those at risk of a second fracture. New techniques of vertebroplasty and kyphoplasty offer alternatives for patients with particularly challenging cases.

In addition to calcium and vitamin D, more effective medications consisting of oral or intravenous bisphosphonates and the monoclonal antibody, denosumab, are described. Enhanced bracing mechanisms, exercise regimens, and fall prevention programs are discussed. However, it should be noted that the availability of many potential interventions coexists with the need for greater physician awareness of these options, better patient adherence to prescribed treatment and rehabilitation programs, and challenges of cost and payment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinaki M. Falls, fractures, and hip pads. Curr Osteoporos Rep. 2004;2(4):131–7.

    Article  PubMed  Google Scholar 

  2. Michelson JD, Myers A, Jinnah R, Cox Q, Van Natta M. Epidemiology of hip fractures among the elderly: risk factors for fracture type. Clin Orthop Relat Res. 1995;311:129–35.

    Google Scholar 

  3. Grimes JP, Gregory PM, Noveck H, Butler MS, Carson JL. The effects of time-to-surgery on mortality and morbidity in patients following hip fracture. Am J Med. 2002;112(9):702–9.

    Article  PubMed  Google Scholar 

  4. Poh KS, Lingaraj K. Complications and their risk factors following hip fracture surgery. J Orthop Surg. 2013;21(2):154–7.

    Article  Google Scholar 

  5. Casaletto JA, Gatt R. Post-operative mortality related to waiting time for hip fracture surgery. Injury. 2004;35(2):114–40.

    Article  PubMed  Google Scholar 

  6. Dorotka R, Schoechtner H, Buchinger W. The influence of immediate surgical treatment of proximal femoral fractures on mortality and quality of life. Operation within 6 hours of the fracture versus later than 6 hours. J Bone Joint Surg (Br). 2003;85(8):1107–13.

    Article  CAS  Google Scholar 

  7. Karagas MR, Lu-Yao GL, Barrett JA, Beach ML, Baron JA. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol. 1996;143(7):677–82.

    Article  CAS  PubMed  Google Scholar 

  8. Wheeless CR. Fractures of the lesser and greater trochanter. Wheeless Textbook of Orthopedics. http://www.wheelessonline.com/ortho/fractures_of_the_lesser_and_greater_trochanter. Accessed 25 Jan 2015.

  9. Koval KJ, Zuckerman JD. Hip fractures: II. Evaluation and treatment of intertrochanteric fractures. J Am Acad Orthop Surg. 1994;2(3):150–6.

    Article  CAS  PubMed  Google Scholar 

  10. Koval KJ, Zuckerman JD. Hip fractures: I. Overview and evaluation and treatment of femoral-neck fractures. J Am Acad Orthop Surg. 1994;2(3):141–9.

    Article  CAS  PubMed  Google Scholar 

  11. Parker MJ, Gurusamy K. Internal fixation versus arthroplasty for intracapsular proximal femoral fractures in adults. Cochrane Database Syst Rev. 2006;18(4), CD001708.

    Google Scholar 

  12. Yoon BH, Baek JH, Kim MK, Lee YK, Ha YC, Koo KH. Poor prognosis in elderly patients who refused surgery because of economic burden and medical problem after hip fracture. J Korean Med Sci. 2013;28(9):1378–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siebens HC, Sharkey P, Aronow HU, Horn SD, Munin MC, De Jong G, et al. Outcomes and weight-bearing status during rehabilitation after arthroplasty for hip fractures. PM&R. 2012;4(8):548–55.

    Article  Google Scholar 

  14. Ariza-Vega P, Jiménez-Moleón JJ, Kristensen MT. Non-weight-bearing status compromises the functional level up to 1 yr after hip fracture surgery. Am J Phys Med Rehabil. 2014;93(8):641–8.

    Article  PubMed  Google Scholar 

  15. Koval KJ, Hoehl JJ, Kummer FJ, Simon JA. Distal femoral fixation: a biomechanical comparison of the standard condylar buttress plate, a locked buttress plate, and the 95-degree blade plate. J Orthop Trauma. 1997;11(7):521–4.

    Article  CAS  PubMed  Google Scholar 

  16. Mont MA, Maar DC. Fractures of the ipsilateral femur after hip arthroplasty: a statistical analysis of outcome based on 487 patients. J Arthroplasty. 1994;9(5):511–9.

    Article  CAS  PubMed  Google Scholar 

  17. Petersen MM, Lauritzen JB, Pedersen JG, Lund B. Decreased bone density of the distal femur after uncemented knee arthroplasty: a 1-year follow-up of 29 knees. Acta Orthop Scand. 1996;67(4):339–44.

    Article  CAS  PubMed  Google Scholar 

  18. Moatz B, Ludwig SC, Tortolani PJ. Fixation in osteoporotic patients. Cont Spine Surg. 2013;14(1):1–7.

    Article  Google Scholar 

  19. Dahdaleh NS, Dlouhy BJ, Hitchon PW. Percutaneous pedicle screw fixation for the treatment of thoracolumbar fractures. Cont Neurosurg. 2011;33(14):1–8.

    Article  Google Scholar 

  20. Vaccaro AR, Kim DH, Brodke DS, Harris M, Chapman JR, Schildhauer T, et al. Diagnosis and management of thoracolumbar spine fractures. J Bone Joint Surg. 2003;85-A(12):2456–70.

    Article  Google Scholar 

  21. Campbell SE, Phillips CD, Dubovsky E, Cail WS, Omary RA. The value of CT in determining potential instability of simple wedge-compression fractures of the lumbar spine. AJNR Am J Neuroradiol. 1995;16(7):1385–92.

    CAS  PubMed  Google Scholar 

  22. McGroy BJ, VanderWilde RS, Currier BL, Eismont FJ. Diagnosis of subtle thoracolumbar burst fractures. A new radiologic sign. Spine. 1993;18(15):2282–5.

    Article  Google Scholar 

  23. Baron EM, Zeiller SC, Vaccaro AR, Hilibrand AS. Surgical management of thoracolumbar fractures. Cont Spine Surg. 2006;7(1):1–7.

    Article  Google Scholar 

  24. Truumees E, Hilibrand AS, Vaccaro AR. Percutaneous vertebral augmentation. Spine J. 2004;4(2):218–29.

    Article  PubMed  Google Scholar 

  25. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine. 2001;26(14):1511–5.

    Article  CAS  PubMed  Google Scholar 

  26. Rousing R, Andersen MO, Jespersen SM, Thomsen K, Lauritsen J. Percutaneous vertebroplasty compared to conservative treatment in patients with painful acute or subacute osteoporotic vertebral fractures: three-months follow-up in a clinical randomized study. Spine. 2009;34:1349–54.

    Article  PubMed  Google Scholar 

  27. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology. 2000;39(12):1410–4.

    Article  CAS  PubMed  Google Scholar 

  28. Camacho PM. Osteoporosis drugs and medications. In: EndocrineWeb. 2014. http://www.endocrineweb.com/conditions/osteoporosis/osteoporosis-drugs-medications. Accessed 8 Jul 2015.

  29. Grey A, Reid IR. Differences between the bisphosphonates for the prevention and treatment of osteoporosis. Ther Clin Risk Manag. 2006;2(1):77–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Blouin J, Dragomir A, Moride Y, Ste-Marie LG, Fernandes JC, Perreault S. Impact of noncompliance with alendronate and risedronate on the incidence of nonvertebral osteoporotic fractures in elderly women. Br J Clin Pharmacol. 2008;66(1):117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation; 2013. p. 31–2

    Google Scholar 

  32. McClung M, Geusen P, Miller P, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. N Engl J Med. 2001;344(5):333–40.

    Article  CAS  PubMed  Google Scholar 

  33. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrrett-Connor E, Musliner TA, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280(24):2077–82.

    Article  CAS  PubMed  Google Scholar 

  34. Colón-Emeric C, Nordsletten L, Olson S, Major N, Boonen S, Haentjens P, et al. Association between timing of zoledronic acid infusion and hip fracture healing. Osteoporos Int. 2011;22(8):23–9.

    Article  Google Scholar 

  35. Kim TY, Ha YC, Kang BJ, Lee YK, Koo KH. Does early administration of bisphosphonate affect fracture healing in patients with intertrochanteric fractures? J Bone Joint Surg (Br). 2012;94(7):956–60.

    Article  Google Scholar 

  36. Freemantle N, Cooper C, Diez-Perez A, Gitlin M, Radcliffe H, Shepherd S, Roux C, et al. Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. Osteoporos Int. 2013;24(1):209–17.

    Article  CAS  PubMed  Google Scholar 

  37. Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.

    Article  CAS  PubMed  Google Scholar 

  38. Saag K, Lindsay R, Kriegman A, Beamer E, Zhou W. A single zoledronic acid infusion reduces bone resorption markers more rapidly than weekly oral alendronate in postmenopausal women with low bone mineral density. Bone. 2007;40(5):1238–43.

    Article  CAS  PubMed  Google Scholar 

  39. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Caualey JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    Article  CAS  PubMed  Google Scholar 

  40. Yee AJ, Raje NS. Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients. Clin Interv Aging. 2012;7:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sambrook PN, Geusens P, Ribot C, Solimano JA, Ferrer-Barriendos J, Gaines K, Verbruggen N, Melton ME. Alendronate produces greater effects than raloxifene on bone density and bone turnover in postmenopausal women with low bone density: results of EFFECT (Efficacy of FOSAMAX versus EVISTA Comparison Trial) International. J Intern Med. 2004;255(4):503–11.

    Article  CAS  PubMed  Google Scholar 

  42. Sone T, Itob M, Fukunagac M, Tomomitsud T, Sugimotoe T, Shirakif M, Yoshimurag T, Nakamurah Y. The effects of once-weekly teriparatide on hip geometry assessed by hip structural analysis in postmenopausal osteoporotic women with high fracture risk. Bone. 2014;64:75–81.

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Xing XP, Zhang ZL, et al. Infusion of ibandronate once every 3 months effectively decreases bone resorption markers and increases bone mineral density in Chinese postmenopausal osteoporotic women: a 1-year study. J Bone Miner Metab. 2009; (3):299–305.

    Google Scholar 

  44. Gennar L, Merlotti D, Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in post-menopausal women: focus on lasofoxifene. Clin Interv Aging. 2011;5:19–29.

    Google Scholar 

  45. Rosen HN. Patient information: osteoporosis prevention and treatment (beyond the basics). In: UpToDate. 2014. http://www.uptodate.com/contents/osteoporosis-prevention-and-treatment-beyond-thebasics. Accessed June 2015.

  46. Ramaswamy B, Shapiro CL. Osteopenia and osteoporosis in females with breast cancer. Semin Oncol. 2003;30(6):763–75.

    Article  CAS  PubMed  Google Scholar 

  47. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, et al. Effect of testosterone therapy on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(6):1966–72.

    CAS  PubMed  Google Scholar 

  48. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  CAS  PubMed  Google Scholar 

  49. Orwoll E, Scheele W, Paul S, Adami S, Syversen U, Diez-Perez A, et al. Brief therapy with recombinant human parathyroid hormone (1–34) increases lumbar spine bone mineral density in men with idiopathic or hypogonadal osteopenia or osteoporosis. J Bone Miner Res. 2001;16(1):S221.

    Google Scholar 

  50. Cosman F. Combination therapy for osteoporosis: a reappraisal. Bonekey Rep. 2014;3:518. doi:10.1038/bonekey.2014.13.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cosman F, Eriksen EF, Recknor C, Miller PD, Guanabens N, Kaspeck C, et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J Bone Miner Res. 2011;26(3):503–11.

    Article  CAS  PubMed  Google Scholar 

  52. Crandall CJ, Newberry SJ, Diamant A, Lim Y-W, Gellad WF, Suttorp M, et al. Treatment to prevent fractures in men and women with low bone density or osteoporosis: update of a 2007 report, Comparative Effectiveness Review No. 53. Rockville: Agency for Healthcare Research and Quality; 2012. p. ES-13–22.

    Google Scholar 

  53. Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, et al. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis—a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab. 2002;87(5):2060–6.

    CAS  PubMed  Google Scholar 

  54. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459–68.

    Article  CAS  PubMed  Google Scholar 

  55. Reginster JY, Deroisy R, Dougados M, Jupsin I, Colette J, Roux C. Prevention of early postmenopausal bone loss by strontium ranelate: the randomized, double-masked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos Int. 2002;3(12):925–31.

    Article  Google Scholar 

  56. Reginster JY, Seeman E, DeVernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fracture in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab. 2005;90(5):2816–22.

    Article  CAS  PubMed  Google Scholar 

  57. Jonville-Bera AP, Autret-Leca E. Adverse drug reactions of strontium ranelate (Protelos® in France). Presse Med. 2011;40(10):e453–62. doi:10.1016/j.lpm.2011.0.010.

    Article  PubMed  Google Scholar 

  58. Protelos/Osseor to remain available but with further restrictions. In: European medicine agency, Committee on Medicinal Products for Human Use (CHMPP), pharacovigilance risk assessment committee. 2014. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/. Accessed 15 Apr 2015.

  59. Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26(2):242–52. doi:10.1002/jbmr.212.

    Article  CAS  PubMed  Google Scholar 

  60. Ng KW, Martin TJ. Future therapies of osteoporosis. In: Rosen CJ, editor. Primer on metabolic bone diseases. 8th ed. Ames: Wiley-Blackwell; 2013. p. 461–67.

    Chapter  Google Scholar 

  61. Bone HG, Dempster DW, Eisman JA, Greenspan SL, McClung MR, Nakamura T, et al. Odanacatib for the treatment of postmenopausal osteoporosis; development and participant characteristics of LOFT, the long-term odanacatib fracture trial. Osteoporos Int. 2015;26(2):699–712.

    Article  CAS  PubMed  Google Scholar 

  62. Canalis E. Wnt signaling in osteoporosis: mechanisms and novel approaches. Nat Rev Endocrinol. 2013;9(10):575–83. doi:10.1038/nrendo.2013.154.

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25(12):2647–56. doi:10.1002/jbmr.182.

    Article  PubMed  Google Scholar 

  64. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single dose, placebo-controlled randomized study of AMG 785. J Bone Miner Res. 2011;26(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  65. Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas. 2014;78(3):199–204. doi:10.1016/jmaturitas.2004.04.016.

    Article  CAS  PubMed  Google Scholar 

  66. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–20. doi:10.1056/NEJMoa1305224.

    Article  CAS  PubMed  Google Scholar 

  67. Sinaki M. Critical appraisal of physical rehabilitation measures after osteoporotic vertebral fracture. Osteoporos Int. 2003;14(9):773–9.

    Article  PubMed  Google Scholar 

  68. Lin JT, Lane JM. Nonpharmacologic management of osteoporosis to minimize fracture risk. Nat Clin Pract Rheum. 2008;4(1):20–5.

    Article  Google Scholar 

  69. Prather H, Watson JO, Gilula LA. Nonoperative management of osteoporotic vertebral compression fractures. Injury. 2007;38(3):S40–8.

    Article  PubMed  Google Scholar 

  70. Buchalter D, Kahanovitz N, Viola K, Dorsky S, Nordin M. Three-dimensional spinal motion measurements. Part 2: a noninvasive assessment of lumbar brace immobilization of the spine. J Spinal Disord Tech. 1988;1(4):284–6.

    Article  CAS  Google Scholar 

  71. Kaplan RS, Sinaki M, Hameister MD. Effect of back supports on back strength in patients with osteoporosis: a pilot study. Mayo Clin Proc. 1996;71(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  72. Pfeifer M, Begerow B, Minne HW. Effects of a new spinal orthosis on posture, trunk strength, and quality of life in women with postmenopausal osteoporosis: a randomized trial. AJPMR. 2004;83:177–86.

    Google Scholar 

  73. Pfeifer M, Kohlwey L, Begerow B, Minne HW. Effects of two newly developed spinal orthoses on trunk muscle strength, posture, and quality-of-life in women with postmenopausal osteoporosis: a randomized trial. Am J Phys Med Rehabil. 2011;90(10):805–15.

    Article  PubMed  Google Scholar 

  74. Sinaki M, Brey RH, Hughes CA, Larson DR, Kaufman KR. Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength. Osteoporos Int. 2005;16(8):1004–10.

    Article  PubMed  Google Scholar 

  75. Sinaki M, Lynn S. Reducing the risk of falls through proprioceptive dynamic posture training in osteoporotic women with kyphotic posturing: a randomized pilot study. Am J Phys Med Rehabil. 2002;81(4):241–6.

    Article  PubMed  Google Scholar 

  76. Kaplan RS, Sinaki M. Posture training support: preliminary report on a series of patients with diminished symptomatic complications of osteoporosis. Mayo Clin Proc. 1993;68:1171–6.

    Article  CAS  PubMed  Google Scholar 

  77. Sinaki M, Wollan PC, Scott RW, Gelczer RK. Can strong back extensors prevent vertebral fractures in women with osteoporosis? Mayo Clin Proc. 1996;71(10):951–6.

    Article  CAS  PubMed  Google Scholar 

  78. Sinaki M. Exercise for patients with osteoporosis: management of vertebral compression fractures and trunk strengthening for fall prevention. Am J Phys Med Rehabil. 2012;4(11):882–8.

    Google Scholar 

  79. Sinaki M, Brey RH, Hughes CA, Larson DR, Kaufman KR. Significant reduction in risk of falls and back pain in osteoporotic-kyphotic women through a Spinal Proprioceptive Extension Exercise Dynamic (SPEED) program. Mayo Clin Proc. 2005;80(7):849–55.

    Article  PubMed  Google Scholar 

  80. Sinaki M, Pfeifer M, Preisinger E, Itoi E, Rizzoli R, Boonen S, et al. The role of exercise in the treatment of osteoporosis. Curr Osteoporos Rep. 2010;8(3):138–44.

    Article  PubMed  Google Scholar 

  81. Sinaki M, Itoi E, Wahner HW, Wollan P, Gelzcer R, Mullan BP, et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone. 2002;30(6):836–41.

    Article  CAS  PubMed  Google Scholar 

  82. Sinaki M, Mikkelsen BA. Postmenopausal spinal osteoporosis: flexion versus extension exercises. Arch Phys Med Rehabil. 1984;65(10):593–6.

    CAS  PubMed  Google Scholar 

  83. Sinaki M. Nonpharmacologic interventions: exercise, fall prevention, and role of physical medicine. Clin Geriatr Med. 2003;19(2):337–59.

    Article  PubMed  Google Scholar 

  84. Sinaki M, Nwaogwugwu NC, Phillips BE, Mokri MP. Effect of gender, age, and anthropometry on axial and appendicular muscle strength. Am J Phys Med Rehabil. 2001;80(5):330–8.

    Article  CAS  PubMed  Google Scholar 

  85. Rudins A, Sinaki M, Miller JL, Piper SM, Bergstrahl EJ, et al. Significance of back extensors versus back flexors in truncal support. Arch Phys Med Rehabil. 1991;72(10):824.

    Google Scholar 

  86. Inufusa A, An HS, Lim TH, Hasegawa T, Haughton VM, Nowicki BH. Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine. 1996;21(21):2412–20.

    Article  CAS  PubMed  Google Scholar 

  87. Ezenwa B, Yeoh HT. Multiple vibration displacements at multiple vibration frequencies stress impact on human femur computational analysis. J Rehabil Res Dev. 2011;48(2):179–90.

    Article  PubMed  Google Scholar 

  88. Wysocki A, Butler M, Shamliyan T, Kane R. Whole-body vibration therapy for osteoporosis, Comparative Effectiveness Technical Briefs. No. 10. Rockville: Agency for Healthcare Research and Quality (US); 2011.

    Google Scholar 

  89. Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord. 2006;7(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Verschueren S, Roelants M, Delecluse C, Swinnen S, Vanderschueran D, Bonner S, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res. 2004;19(3):352–9.

    Article  PubMed  Google Scholar 

  91. Slatkovska L, Alibhai SM, Beyene J, Cheung AM. Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int. 2010;21(12):1969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ruan X, Jin F, Liu Y, Peng ZL, Sun YG. Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis. Chin Med J (Engl). 2008;121(13):1155–8.

    Google Scholar 

  93. Iwamoto J, Takeda T, Sato Y, Uzawa M. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res. 2005;17:157–63.

    Article  CAS  PubMed  Google Scholar 

  94. Bemben DA, Palmer IJ, Bemben MG, Knehans AW. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism. Bone. 2010;47(3):650–6.

    Article  PubMed  Google Scholar 

  95. Lau RW, Liao LR, Yu F, Teo T, Chung RC, Pang MY. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil. 2011;25(11):975–88.

    Article  PubMed  Google Scholar 

  96. Sitjà-Rabert M, Rigau D, Fort Vanmeerghaeghe A, Romero-Rodriguez D, Bonastre Subirana M, Bonfill X. Efficacy of whole body vibration exercise in older people: a systematic review. Disabil Rehabil. 2012;34(11):883–93.

    Article  PubMed  Google Scholar 

  97. Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. EJAP. 2010;108(5):877–904.

    Google Scholar 

  98. Torvinen S, Kannus O, Sievanan H, Jarvinen TA, Pasanen M, Kontulainen S, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res. 2003;18(5):352–9.

    Article  Google Scholar 

  99. Lings S, Leboeuf-Yde C. Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992–1999. Int Arch Occup Environ Health. 2000;73(5):290–7.

    Article  CAS  PubMed  Google Scholar 

  100. Seidel H, Harazin B, Pavlas K, Stroka C, Richter J, Bluthner R, et al. Isolated and combined effects of prolonged exposures to noise and whole-body vibration on hearing, vision and strain. Int Arch Occup Environ Health. 1988;61(1–2):95–106.

    Article  CAS  PubMed  Google Scholar 

  101. Dandanell R, Engström K. Vibration from riveting tools in the frequency range 6 Hz-10 MHz and Raynaud’s phenomenon. Scand J Work Environ Health. 1986;12(4):338–42.

    Article  CAS  PubMed  Google Scholar 

  102. National Osteoporosis Foundation. Types of osteoporosis medications. Washington, DC: National Osteoporosis Foundation. http://nof.org/articles/22. Accessed 6 June 2015.

  103. Cummings SR, Palermo L, Browner W, Marcus R, Wallace R, Pearson J, et al. Monitoring osteoporosis therapy with bone densitometry: misleading changes and regression to the mean. JAMA. 2002;283(10):1318–21. doi:10.1001/jama.283.10.1318.

    Article  Google Scholar 

  104. Compston J. Monitoring osteoporosis treatment. Best Prac Res Clin Rheumatol. 2009;23(6):781–8. doi:10.1016/j.berh.2009.09.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina V. Oleson .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oleson, C.V., Morina, A.B. (2017). Interventions and Management of Complications of Osteoporosis. In: Osteoporosis Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-45084-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45084-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45082-7

  • Online ISBN: 978-3-319-45084-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics