Skip to main content

Osteoporosis in Cardiopulmonary, Kidney and Liver Disorders

  • Chapter
  • First Online:
Book cover Osteoporosis Rehabilitation
  • 921 Accesses

Abstract

Osteoporosis coexists with other chronic diseases to provide what some authors have termed “multimorbidity” interactions. This chapter focuses on four chronic diseases—cardiovascular and pulmonary conditions as well as kidney and liver disorders. As with osteoporosis, these conditions are associated with aging, even if aging, as in the case of cystic fibrosis, begins as early as adolescence. In each case, either the condition itself or its treatment may lead to new-onset osteoporosis, exacerbate existing osteoporosis, or increase fracture risk even when an individual’s BMD would not suggest a risk. For example, low bone mineral bone density and vitamin D deficiency are associated with COPD, while its treatment including prolonged use of oral corticosteroids can induce osteoporosis. In aspects of liver failure, fractures can occur even with moderate declines in BMD, generally not in the range when fractures would otherwise occur. In the diseases selected, this chapter will examine the prevalence of one condition in consort with the other, the impact of the interaction of these conditions, and the drug–disease interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colon-Emeric C, O’Connell MB, Haney E. Osteoporosis piece of multi-morbidity puzzle in geriatric care. Mt Sinai J Med. 2011;78(4):515–26. doi:10.1002/msj.20269.

    Article  PubMed  Google Scholar 

  2. Stojanovic OI, Lazovic M, Lazovic M, Vuceljic M. Association between atherosclerosis and osteoporosis, the role of vitamin D. Arch Med Sci. 2011;7(2):179–88. doi:10.5114/aoms.2011.22066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Brüggenjürgen B, Israel CW, Klesius AA, Ezzat N, Willich SN. Health services research in heart failure patients treated with a remote monitoring device in Germany—a retrospective database analysis in evaluating resource use. J Med Econ. 2012;15(4):737–45.

    Article  PubMed  Google Scholar 

  4. Schuiling KD, Robinia K, Nye R. Osteoporosis update. J Midwifery Womens Health. 2011;56(6):515–27. doi:10.1111/j.1542-2011.2011.00135.x.

    Article  Google Scholar 

  5. Aluoch AO, Jessee R, Habal H, Garcia-Rosell M, Shah R, Reed G, et al. Heart failure as a risk factor for osteoporosis and fractures. Curr Osteoporos Rep. 2012;10(4):258–69. doi:10.1007/s11914-012-0115-2.

    Article  PubMed  Google Scholar 

  6. Nishio K, Mukae S, Aoki S, Itoh S, Konno N, Ozawa K, et al. Congestive heart failure is associated with the rate of bone loss. J Intern Med. 2003;253(4):439–46.

    Article  CAS  PubMed  Google Scholar 

  7. Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V, et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  8. Dolgin M. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. Criteria Committee of the New York Heart Association. 9th ed. Boston: Little, Brown; 1994.

    Google Scholar 

  9. Zotos P, Terrovitis J, Karga E, Nanas S, Kaldara E, Chalazonitis A, et al. Osteoporosis in heart failure is associated with secondary hyperparathyroidism and has adverse prognostic implications. Circulation. 2010;21[Suppl Abstract] 13703.

    Google Scholar 

  10. Terrovitis J, Zotos P, Kaldara E, Diakos N, Tseliou E, Vakrou S, et al. Bone mass loss in chronic heart failure is associated with secondary hyperparathyroidism and has prognostic significance. Eur J Heart Fail. 2012;14(3):326–32. doi:10.1093/eurjhf/hfs002.

    Article  CAS  PubMed  Google Scholar 

  11. Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, et al. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodeling: a role for inflammation. Eur Heart J. 2010;31(16):1975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aksoy Y, Yagmur C, Tekin GO, Yagmur J, Topal E, Kekilli E, et al. Aortic valve calcification: association with bone mineral density and cardiovascular risk factors. Coron Artery Dis. 2005;16(6):379–83.

    Article  PubMed  Google Scholar 

  13. Boukhris R, Becker KL. Calcification of the aorta and osteoporosis. Aroentgenographic study. JAMA. 1972;219(10):1307–11.

    Article  CAS  PubMed  Google Scholar 

  14. Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B, Demer L. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest. 1994;93(5):2106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab. 2004;89(9):4246–52.

    Article  CAS  PubMed  Google Scholar 

  16. Bakhireva LN, Barrett-Connor EL, Laughlin GA, Kritz-Silverstein D. Differences in association of bone mineral density with coronary artery calcification in men and women: the Rancho Bernardo study. Menopause. 2005;12(6):691–8.

    Article  PubMed  Google Scholar 

  17. Barengolts EI, Berman M, Kukreja SC, Kousnetsova T, Lin C, Chomka EV. Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int. 1998;62(3):209–13.

    Article  CAS  PubMed  Google Scholar 

  18. Pfister R, Michaels G, Sharp SJ, Luben B, Wareham NJ, Khaw KT. Low bone mineral density predicts incident heart failure in men and women: the EPIC (European Prospective Investigation into Cancer and Nutrition)-Norfolk prospective study. JACC Heart Fail. 2014;2(4):380–9. doi:10.1016/j.jchf.2014.03.010.

    Article  PubMed  Google Scholar 

  19. Lyles KW, Colon-Emeric CS. Does low bone mineral density cause a broken heart? J Clin Heart Fail. 2014;2(4):390–1. doi:10.1016/j.jchf.2014.04.002.

    Article  Google Scholar 

  20. Wawrzynska L, Tomkowski WZ, Przedlackl J, Hajduk B, Torbicki A. Changes in bone density during long-term administration of low molecular weight heparins or acenocoumarol for secondary prophylaxis of venous thromboembolism. Pathophysiol Haemost Thromb. 2003;33(2):64–7.

    Article  CAS  PubMed  Google Scholar 

  21. Jamal SA, Browner WS, Bauer DC, Cummings SR. Warfarin use and risk for osteoporosis in elderly. Study of osteoporotic fractures research group. Ann Intern Med. 1998;128(10):829–32.

    Article  CAS  PubMed  Google Scholar 

  22. Chang YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA. HMG CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab. 2000;85(3):1137–42.

    Google Scholar 

  23. Edwards CJ, Hart DJ, Spector TD. Oral statins and increased bone mineral density in postmenopausal women. Lancet. 2000;355(9222):2218–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Harris F, et al. Statin use, bone mass and fracture: an analysis of two prospective studies. J Bone Miner Res. 1999;14 Suppl 1:S179.

    Google Scholar 

  25. Chan KA, Andrade DE, Boles M, Buist DS, Chase GA, Donahue JG, et al. Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet. 2000;355(9222):2185–8.

    Article  CAS  PubMed  Google Scholar 

  26. Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA. 2000;283(24):3205–10.

    Article  CAS  PubMed  Google Scholar 

  27. Wang PS, Solomon DH, Mogun H, Avorn J. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA. 2000;283(24):3211–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wang GJ, Chung KC, Shen WJ. Lipid clearing agents in steroid induced osteoporosis. J Formos Med Assoc. 2000;94(10):589–92.

    Google Scholar 

  29. Mundy G, Garret R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sirola J, Sirola J, Honkanen R, Kröger H, Jurvelin JS, Mäenpää P, Saarikoski S. Relation of statin use and bone loss: a prospective population-based cohort study in early postmenopausal women. Osteoporos Int. 2002;13(7):537–41.

    Article  CAS  PubMed  Google Scholar 

  31. LaCroix A, Cauley J, Pettinger M, Hsia J, Bauer DC, McGowan J, et al. Statin use, clinical fracture and bone mineral density in postmenopausal women: results from the women’s health initiative observational study. Ann Intern Med. 2003;139(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  32. Peña J, Aspberg S, MacFadyen J, Glynn RJ, Solomon DH, Ridker PM. Statin therapy and risk of fracture: results from the JUPITOR randomized clinical trial. JAMA Intern Med. 2015;175(2):171–7. doi:10.1001/jamainternmed.2014.6388.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cockcroft JR, Pedersen ME. β-blockade: benefits beyond blood pressure reduction? J Clin Hypertens. 2012;14(2):112–20. doi:10.1111/j.1751-7176.2011.00553.x.

    Article  CAS  Google Scholar 

  34. Sosa M, Saavedra P, Gómez de Tejada MJ, Mosquera J, Pérez-Cano R, Olmos JM, et al. β-blocker use is associated with fragility fractures in postmenopausal women with coronary heart disease. Aging Clin Exp Res. 2011;23(2):112–7. doi:10.3275/7041.

    CAS  PubMed  Google Scholar 

  35. Ruths S, Bakken MS, Ranhoff AH, Hunskaar S, Engesaeter LB, Engeland A. Risk of hip fracture among older people using antihypertensive drugs: a nationwide cohort study. BMC Geriatr. 2015;15:1–10. doi:10.1186/s12877-015-0154-5.

    Article  CAS  Google Scholar 

  36. Yang S, Nguyen ND, Eisman JA, Nguyen TV. Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone. 2012;51(5):969–74. doi:10.1016/j.bone.2012.07.013.

    Article  CAS  PubMed  Google Scholar 

  37. Toulis KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP. β -adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. 2014;25(1):121–9. doi:10.1007/s00198-013-2498-z.

    Article  CAS  PubMed  Google Scholar 

  38. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens. 2006;24(3):581–9.

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22(7):2465–75. doi:10.1096/fj.07-098954.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia Delgado I, Gil-Fraguas L, Robles E, Martinez G, Hawkins F. Clinical factors associated with bone mass loss previous to cardiac transplantation. Med Clin (Barc). 2000;114(20):761–4.

    Article  CAS  Google Scholar 

  41. Dolgos S, Hartmann A, Isaksen GA, Simonsen S, Bjortuft O, Boberg KM, et al. Osteoporosis is a prevalent finding in patients with solid organ failure awaiting transplantation - a population based study. Clin Transplant. 2010;24(5):E145–52.

    Article  PubMed  Google Scholar 

  42. Kulak CA, Borba VZ, Kulak Jr J, Custodio MR. Osteoporosis after transplantation. Curr Osteoporos Rep. 2012;10(1):48–55.

    Article  PubMed  Google Scholar 

  43. Oz MC, Argenziano M, Catanese KA, Gardocki MT, Goldstein DJ, Ashton RC, et al. Bridge experience with long-term implantable left ventricular assist devices. Are they an alternative to transplantation? Circulation. 1997;95(7):1844–52.

    Article  CAS  PubMed  Google Scholar 

  44. Liang B, Feng Y. The association of low bone mineral density with clinically stable COPD. Endocrine. 2012;42(1):190–5.

    Article  CAS  PubMed  Google Scholar 

  45. Sheikh S, Gemma S, Patel A. Factors associated with low one mineral density in patients with cystic fibrosis. J Bone Miner Metab. 2015;33(2):180–5. doi:10.1007/s00774-014-0572-z.

    Article  CAS  PubMed  Google Scholar 

  46. Cystic Fibrosis Foundation, What is cystic fibrosis/about cystic fibrosis, https://www.cff.org/What-is-CF/About-Cystic-Fibrosis. Accessed 3 Feb 2016.

  47. Lehouck A, Boonen S, Decramer M, Janssens W. COPD, bone metabolism, and osteoporosis. Chest. 2011;139(3):648–57. doi:10.1378/chest.10-1427.

    Article  PubMed  Google Scholar 

  48. Graat-Verboom L, Wouters EF, Smeenk FW, van den Borne BE, Lunde R, Spruit MA. Current status of research on osteoporosis in COPD: a systemic review. Eur Respir J. 2009;34(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  49. Heron M. Deaths: leading causes for 2012. Nat Vital Stat Rep. 2015;64(10):1–93.

    Google Scholar 

  50. Qaseem A, Snow V, Shekelle P, Hopkins R, Forciea MA, Owens DK. Screening for osteoporosis in men: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2008;148(9):680–4.

    Article  PubMed  Google Scholar 

  51. Førli L, Mellbye OJ, Halse J, Bjørtuft O, Vatn M, Boe J. Cytokines, bone turnover markers and weight change in candidates for lung transplantation. Pulm Pharmacol Ther. 2008;21(1):188–95.

    Article  PubMed  CAS  Google Scholar 

  52. Silva DR, Coelho AC, Dumke A, Valentini JD, de Nunes JN, Stefani CL, et al. Osteoporosis prevalence and associated factors in patients with COPD: a cross-sectional study. Respir Care. 2011;56(7):961–8. doi:10.4187/respcare.01056.

    Article  PubMed  Google Scholar 

  53. Graat-Verboom L, van der Borne BE, Smeenk FW, Spruit MA, Wouters EF. Osteoporosis in COPD outpatients based on bone mineral density and vertebral fractures. J Bone Miner Res. 2011;26(3):561–8.

    Article  PubMed  Google Scholar 

  54. Graat-Verboom L, Spruit MA, van den Borne BE, Smeenk FW, Lunde R, Wouters EF, et al. Correlates of osteoporosis in chronic obstructive pulmonary disease: an underestimated systemic component. Respir Med. 2009;103(8):1143–51. doi:10.1016/j.rmed.2009.02.014.

    Article  PubMed  Google Scholar 

  55. Ferguson GT, Calverley PM, Anderson JA, Jenkins CR, Jones PW, Wilits LR, et al. Prevalence and progression of osteoporosis in patients with COPD: results from the TOwards a Revolution in COPD Health study. Chest. 2009;136(6):1456–65. doi:10.1378/chest.08-3016.

    Article  PubMed  Google Scholar 

  56. Sin DD, Man JP, Man SF. The risk of osteoporosis in Caucasian men and women with obstructive airways disease. Am J Med. 2003;114(1):10–4.

    Article  PubMed  Google Scholar 

  57. Iqbal F, Michaelson J, Thaler L, Rubin J, Roman J, Nanes MS. Declining bone mass in men with chronic pulmonary disease: contribution of glucocorticoid treatment, body mass index, and gonadal function. Chest. 1999;116(6):1616–24.

    Article  CAS  PubMed  Google Scholar 

  58. Sabit R, Bolton CE, Edwards PH, Pettit RJ, Evans WD, McEniery CM, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(12):1259–65.

    Article  PubMed  Google Scholar 

  59. Bolton CE, Ionescu AA, Shiels KM, Pettit RJ, Edwards PH, Stone MD, et al. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(12):1286–93.

    Article  PubMed  Google Scholar 

  60. Jørgensen NR, Schwarz P, Holme I, Henriksen BM, Petersen LG, Backer V. The prevalence of osteoporosis in patients with chronic obstructive pulmonary disease: a cross sectional study. Respir Med. 2007;101(1):177–85.

    Article  PubMed  Google Scholar 

  61. Nuti R, Siviero P, Maggi S, Guglielmi G, Caffarelli C, Crepaldi G, Gonnelli S. Vertebral fractures in patients with chronic obstructive pulmonary disease: the EOLO Study. Osteoporos Int. 2009;20(5):989–98. doi:10.1007/s00198-008-0770-4.

    Article  CAS  PubMed  Google Scholar 

  62. Papaioannou A, Parkinson W, Ferko N, Probyn L, Ioannidis G, Jurriaans E, et al. Prevalence of vertebral fractures among patients with chronic obstructive pulmonary disease in Canada. Osteoporos Int. 2003;14(11):913–7.

    Article  CAS  PubMed  Google Scholar 

  63. McEvoy CE, Ensrud KE, Bender E, Genant HK, Yu W, Griffith JM, et al. Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(3):704–9.

    Article  CAS  PubMed  Google Scholar 

  64. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532–5.

    Article  PubMed  Google Scholar 

  65. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  66. Drummond MB, Dasenbrook EC, Pitz MW, Murphy DJ, Fan E. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300:2407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jaramillo JD, Wilson C, Stinson DS, Lynch DA, Bowler RP, Lutz S, et al. Reduced bone density and vertebral fractures in smokers. Ann Am Thorac Soc. 2015;12(5):648–56. doi:10.1513/AnnalsATS.201412-591OC.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Loke YK, Cavallazzi R, Singh S. Risk of fractures with inhaled corticosteroids in COPD: systemic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66(8):699–708. doi:10.1136/thx.2011.160028.

    Article  PubMed  Google Scholar 

  69. Panday K, Gona A, Humphrey MB. Medication induced osteoporosis: screening and treatment strategies. Ther Adv Musculoskelet Dis. 2014;6(5):185–202. doi:10.1177/1759720X14546350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tantucci C. COPD and osteoporosis: something more than a comorbidity. Endocrine. 2012;42(1):5–6. doi:10.1007/s12020-012-9686-z.

    Article  CAS  PubMed  Google Scholar 

  71. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121–32. doi:10.1007/s00223-013-9749-z.

    Article  CAS  PubMed  Google Scholar 

  72. Kondo T, Kitazawa R, Maeda S, Kitazawa S. 1α,25 dihydroxyvitamin D3 rapidly regulates the mouse osteoprotegerin gene through dual pathways. J Bone Miner Res. 2004;19(9):1411–9.

    Article  CAS  PubMed  Google Scholar 

  73. Halfon M, Phan O, Teta D. Vitamin D: a review on its effects on muscle strength and the risk of fall and frailty. Biomed Res Intl. 2015. Article ID 953241:1–11. http://dx.doi.org/10.1155/2015/953241.

  74. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, et al. Effect of vitamin D on falls: a meta-analysis. JAMA. 2004;291(16):1999–2006.

    Article  CAS  PubMed  Google Scholar 

  75. Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP. A higher dose of vitamin D reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc. 2007;55(2):234–9.

    Article  PubMed  Google Scholar 

  76. Kim HC, Mofarrahi M, Hussain SN. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(4):637–58.

    PubMed  PubMed Central  Google Scholar 

  77. Mineo TC, Ambrogi V, Mineo D, Fabbri A, Fabbrini E, Massoud R. Bone mineral density improvement after lung volume reduction surgery for severe emphysema. Chest. 2005;127(6):1960–6.

    Article  PubMed  Google Scholar 

  78. Corhay JL, Dang DN, Van Cauwenberge H, Louis R. Pulmonary rehabilitation and COPD: providing patients a good environment for optimizing therapy. Int J Chron Obstruct Pulmon Dis. 2014;9:27–39. doi:10.2147/COPD.S52012.

    PubMed  Google Scholar 

  79. Susiwala S. A detailed description on breathing exercises. http://www.slideshare.net/sharminsusiwala22/a-detailed-description-on-breathing-exercises. Accessed 13 Mar 2016.

  80. Garritan SL. Physical therapy interventions for persons with chronic obstructive pulmonary disease. In: Bach JR, editor. Pulmonary rehabilitation: the obstruction and paralytic conditions. Philadelphia: Hanley and Belfus; 1996. p. 85–98.

    Google Scholar 

  81. Janssens W, Lehouck A, Carremans C, Bouillon R, Mathieu C, Decramer M. Vitamin D beyond bones in chronic obstructive pulmonary disease: time to act. Am J Respir Crit Care Med. 2009;179(8):630–6. doi:10.1164/rccm.200810-1576PP.

    Article  CAS  PubMed  Google Scholar 

  82. Garrod R, Lasserson T. Role of physiotherapy in the management of chronic lung diseases: an overview of systematic reviews. Respir Med. 2007;101(12):2429–36.

    Article  PubMed  Google Scholar 

  83. Camp PG, Appleton J, Reid WD. Quality of life after pulmonary rehabilitation: assessing change using quantitative and qualitative methods. Phys Ther. 2000;80(10):986–95.

    CAS  PubMed  Google Scholar 

  84. American Lung Association. Nutrition guidelines. 2016. http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/copd/living-with-copd/. Accessed 13 Feb 2016.

  85. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  86. Smith BJ, Laslett LL, Pile KD, Phillips P, Phillipov G, Evans SM, et al. Randomized controlled trial of alendronate in airway disease and low bone mineral density. Chron Respir Dis. 2004;1(3):131–7.

    Article  CAS  PubMed  Google Scholar 

  87. Compston J. US and UK guidelines for glucocorticoid-induced osteoporosis: similarities and differences. Curr Rheumatol Rep. 2004;6(1):66–9.

    Article  PubMed  Google Scholar 

  88. Grossman JM, Gordon R, Ranganath VK, Deal C, Caplan L, Chen W, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62(11):1515–26. doi:10.1002/acr.20295.

    Article  Google Scholar 

  89. LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev. 2010;23(2):299–323.

    Article  PubMed  PubMed Central  Google Scholar 

  90. American Lung Association. Lung health and diseases: learn about cystic fibrosis. 2016. http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/cystic-fibrosis/learn-about-cystic-fibrosis.html. Accessed 4 Mar 2016.

  91. Spoonhower KA, David PB. Epidemiology of cystic fibrosis. Clin Chest Med. 2016;37(1):1–8.

    Article  PubMed  Google Scholar 

  92. Cystic Fibrosis Foundation. Cystic fibrosis foundation patient registry: annual data report, 2014. Cystic Fibrous Foundation. Bethesda, MD. 2015, p 73. Accessed 4 Mar 2016.

    Google Scholar 

  93. Gore AP, Kwon SH, Stenbit AE. A roadmap to the brittle bones of cystic fibrosis. J Osteoporos. 2011; 926045. http://dx.doi.org/10.4061/2011/926045.

  94. Mischler EH, Chesney PJ, Chesney RW, Mazess RB. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979;133(6):632–5.

    Article  CAS  PubMed  Google Scholar 

  95. Conway SP, Morton AM, Oldroyd B, Truscott JG, White H, Smith AH, et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax. 2000;55(9):798–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aris RM, Ontjes DA, Buell HE, Blackwood AD, Lark RK, Caminiti M, et al. Abnormal bone turnover in cystic fibrosis adults. Osteoporos Int. 2002;13(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  97. Aris RM, Renner JB, Winders AD, Buell HE, Riggs DB, Lester GE, et al. Increased rate of fractures and severe kyphosis: sequelae of living into adulthood with cystic fibrosis. Ann Intern Med. 1998;128(3):186–93.

    Article  CAS  PubMed  Google Scholar 

  98. Paccou J, Zeboulon N, Combescure C, Gossec L, Cortet B. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: systematic literature review with meta-analysis. Calcif Tissue Int. 2010;86:1–7. doi:10.1007/s00223-009-9316-9.

    Article  CAS  PubMed  Google Scholar 

  99. Goalski JL, Aris RM. In: Bush A, Bilton D, Hobson M, editors. Hudson and Geddes’ cystic fibrosis. 4th ed. Boca Raton: CRC Press; 2016. p. 365.

    Google Scholar 

  100. Putnam MS, Baker JF, Ulner A, Herlyn K, Lapey A, Sicilian L, et al. Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period. J Cyst Fibro. 2015;14:526–32. doi:10.1016/jcf.2015.01.011.

    Article  Google Scholar 

  101. Stalvey MS, Clines GA. Cystic fibrosis-related bone disease: insights into a growing problem. Curr Opin Endocrinol Diabetes Obes. 2013;20(6):547–52. doi:10.1097/01.med.0000436191.87727.ec.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr. 1996;128(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  103. Javier RM, Jacquot J. Bone disease in cystic fibrosis: what’s new? Joint Bone Spine. 2011;78(5):445–50. doi:10.1016/jbspin.2010.11.015.

    Article  PubMed  Google Scholar 

  104. Teramoto S. Mechanism of osteoporosis in patients with cystic fibrosis. Thorax. 2000;55(5):439. doi:10.1136/thorax.55.5.43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morrell MR, Pilewski JM. Lung transplantation for cystic fibrosis. Clin Chest Med. 2016;37(1):127–38. doi:10.1016/j.ccm.2015.11.008.

    Article  PubMed  Google Scholar 

  106. Aris RM, Neuringer IP, Weiner MA, Egan TM, Ontjes D. Severe osteoporosis before and after lung transplantation. Chest. 1996;109(5):1176–83.

    Article  CAS  PubMed  Google Scholar 

  107. Dif F, Marty C, Baudoin C, de Vernejoul MC, Levi G. Severe osteoporosis in CFTE-null mice. Bone. 2004;35(3):595–603.

    Article  CAS  PubMed  Google Scholar 

  108. King SJ, Topliss DJ, Kotsimbos T, Nyulasi IB, Bailey M, Ebeling PR, et al. Reduced bone density in cystic fibrosis: delta F508 mutation is an independent risk factor. Eur Respir J. 2005;25(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  109. Pashuck TD, Franz SE, Altman MK, Wasserfall CH, Atkinson MA, Wronski TJ, et al. Murine model for cystic fibrosis bone disease demonstrates osteopenia and sex-related differences in bone formation. Pediatr Res. 2009;65(3):311–6. doi:10.1203/PDR.0b013e3181961e80.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shead EF, Haworth CS, Condliffe AM, McKeon DJ, Scott MA, Compston JE. Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bones. Thorax. 2007;62(7):650–1.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL, et al. Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90(3):1888–96.

    Article  CAS  PubMed  Google Scholar 

  112. Tangpricha V, Kelly A, Stephenson A, Maguiness K, Enders J, Robinson KA, et al. An update on the screening, diagnosis, management, and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendation from the Cystic Fibrosis Foundation. J Clin Endocrinol Metab. 2012;94(4):1082–93. doi:10.1210/jc.2011-3050.

    Article  CAS  Google Scholar 

  113. Nicolaidou P, Stavrinadis I, Loukou I, Papadopoulou A, Georgouli H, Douros K, et al. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur J Pediatr. 2006;165(8):540–5.

    Article  CAS  PubMed  Google Scholar 

  114. Hind K, Truscott JG, Conway SP. Exercise during childhood and adolescence: a prophylaxis against cystic fibrosis-related low BMD? Exercise for bone health in children with cystic fibrosis. J Cyst Fibros. 2008;7(4):270–6. doi:10.1016/j/jcf.2008.02.001.

    Article  CAS  PubMed  Google Scholar 

  115. Conwell LS, Chang AB. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2009;4(4):CD002010. doi:10.1002/14651858.CD002010.pub2.

    Google Scholar 

  116. Bianchi ML, Colombo C, Assael BM, Dubini A, Lombardo M, Quattrucci S, et al. Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate. Lancet Respir Med. 2013;1(5):377–85.

    Article  CAS  PubMed  Google Scholar 

  117. Boyle MP. Update on maintaining bone health in cystic fibrosis. Curr Opin Pulm Med. 2006;12:453–8.

    Article  PubMed  Google Scholar 

  118. Thaker V, Haagensen, Carter B, Fedorowixcz Z, Houston BW. Recombinant growth hormone therapy for cystic fibrosis in children and young adults. Cochrane Database Syst Rev. 2013;6(5):CD008901. doi:10.1002/14651858.CF008901.pub3.

    PubMed Central  Google Scholar 

  119. Cystic Fibrosis Foundation. CF Patient Registry. 2016. https://www.cff.org/Our-Research/CF-Patient-Registry.

  120. Mogazel Jr LJ, Dunitz J, Marrow LC, Hazle LA. Improving chronic care delivery and outcomes: the impact of the cystic fibrosis care center network. BMJ Qual Saf. 2014;23 Suppl 1:13–8.

    Google Scholar 

  121. Hruska KA, Siefert M. Pathophysiology of chronic kidney disease mineral bone disorder (CKD-MBS). In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral netabolism. 8th ed. Ames: Wiley Blackwell; 2013. p. 632–9.

    Chapter  Google Scholar 

  122. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rodríguez M, López I, Muñoz J, Aguilera-Tejero E, Yolanda Almaden Y. FGF 23 and mineral metabolism: implications for CKD-MBD. Nefrologia. 2012;32(3):275–8. doi:10.3265/Nefrologia.pre2012.Mar.11415.

    PubMed  Google Scholar 

  124. Bellorin-Font E, Ambrosoni P, Carlini RG, Carvalho AB, Correa-Rotter R, Cueto-Manzano A, et al. Clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of mineral and bone disorders in chronic kidney disease (CKD-MBD) in adults. Nefrologia. 2013;33 Suppl 1:1–28.

    PubMed  Google Scholar 

  125. Data obtained from Quest Diagnostics, Dept of Billing, Madison NJ 07940. Accessed 7 Aug 2015.

    Google Scholar 

  126. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13(2):89–91.

    Article  CAS  PubMed  Google Scholar 

  127. Taal MW, Mawsud T, Green D, Cassidy MJ. Risk factors for reduced bone density in haemodialysis patients. Nephrol Dial Transplant. 1999;14(8):1922–8.

    Article  CAS  PubMed  Google Scholar 

  128. Gordon PL, Frassetto LA. Management of osteoporosis in CKD stages 3 to 5. Am J Kidney Dis. 2010;55(5):941–56.

    Article  PubMed  Google Scholar 

  129. Stehman-Breen CO, Sherrard D, Walker A, Sadler R, Alem A, Lindberg J. Racial differences in bone mineral density and bone loss among end-stage renal disease patients. Am J Kidney Dis. 1999;33(5):941–6.

    Article  CAS  PubMed  Google Scholar 

  130. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58(1):396–9.

    Article  CAS  PubMed  Google Scholar 

  131. Coco M, Rush H. Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis. 2000;36(6):1115–21.

    Article  CAS  PubMed  Google Scholar 

  132. Stehman-Breen C. Bone mineral density measurements in dialysis patients. Semin Dial. 2001;14(3):228–9.

    Article  CAS  PubMed  Google Scholar 

  133. Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA. The mechanism of phosphorus as a cardiovascular risk tor in chronic kidney disease. J Am Soc Nephrol. 2008;19(6):1092–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kasiske BL, Zeier MG, Chapman JR, Craig JC, Ekberg H, Garvey CA, et al. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130. doi:10.1038/ki.2009.188.

    Google Scholar 

  135. Alshayeb HA, Quarles LD. Treatment of chronic kidney disease-metabolic bone disorder (CKD-MBD). In: Rosen CJ, editor. Primer on the metabolic bone diseases and mineral metabolism. 8th ed. Ames: Wiley; 2013. p. 640–50.

    Chapter  Google Scholar 

  136. Messa P, Macario F, Yaqoob M, et al. The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2008;3(1):36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lafage MH, Combe C, Fournier A, Aparicio M. Ketodiet, physiological calcium intake and native vitamin D improve renal osteodystrophy. Kidney Int. 1992;42(5):1217–25.

    Article  CAS  PubMed  Google Scholar 

  138. Lafage-Proust M-H, Combe C, Barthe N, Aparicio M. Bone mass and dynamic parathyroid function according to bone histology in nondialyzed uremic patients after long-term protein and phosphorus restriction. U Clin Endocrinol Metab. 1999;84(2):512–9.

    Article  CAS  Google Scholar 

  139. Lindberg JS. New vitamin D analogs. Semin Dial. 2001;14:229–30. doi:10.1046/j.1525-139X.2001.00057-3.x.

    Article  CAS  PubMed  Google Scholar 

  140. Slatopolsky E, Finch J, Ritter C, Denda M, Morrissey J, Brown A, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.

    Article  CAS  PubMed  Google Scholar 

  141. Martin KJ, Gonzalez EA, Gellens M, Hamm LL, Abboud H, Lindberg J. 19-Nor-1-alpha-25-dihydroxyvitamin D2 (Paricalcitol) safely and effectively reduces the levels of intact parathyroid hormone in patients on hemodialysis. J Am Soc Nephrol. 1998;9(8):1427–32.

    CAS  PubMed  Google Scholar 

  142. Coburn JW, Tan AU, Levine BS, Mazess RB, Kyllo DM, Knutson JC, et al. 1 alpha-hydroxy-vitamin D2: a new look at an ‘old’ compound. Nephrol Dial Transplant. 1996;11 Suppl 3:153–7.

    Article  CAS  PubMed  Google Scholar 

  143. Frazao JM, Chesney RW, Coburn JW. Intermittent oral 1-alpha-hydroxyvitamin D2 is effective and safe for the suppression of secondary hyperparathyroidism in hemodialysis patients. 1alphaD2 Study Group. Nephrol Dial Transplant. 1998;13 Suppl 3:68–72.

    Article  CAS  PubMed  Google Scholar 

  144. Tan AU, Levine BS, Mazess RB, Kyllo DM, Bishop CW, Knutson JC, et al. Effective suppression of parathyroid hormone by 1 alpha-hydroxy-vitamin D2 in hemodialysis patients with moderate to severe secondary hyperparathyroidism. Kidney Int. 1997;51(1):317–23.

    Article  CAS  PubMed  Google Scholar 

  145. Matuszkiewicz-Rowinska J, Skorzewska K, Radowicki S, Sokalski A, Przedlacki J, Niemczk S, et al. The benefits of hormone replacement therapy in pre-menopausal women with oestrogen deficiency on haemodialysis. Nephrol Dial Transplant. 1999;14(5):1238–43.

    Article  CAS  PubMed  Google Scholar 

  146. Hernandez E, Valera R, Alonzo E, et al. Effects of raloxifene on bone metabolism and serum lipids in postmenopausal women on chronic hemodialysis. Kidney Int. 2003;63(6):2269–74.

    Article  CAS  PubMed  Google Scholar 

  147. Weisinger JR, Heilberg-Pfeferman I, Hernandez E, Carlini R, Bellorin-Font E. Selective estrogen receptor modulators in chronic renal failure. Kidney Int Suppl. 2003;85:S62–5.

    Article  CAS  Google Scholar 

  148. Morello KC, Wurz GT, DeGregorio MW. Pharmacokinetics of selective estrogen receptor modulators. Clin Pharmacokinet. 2003;42(4):361–72.

    Article  CAS  PubMed  Google Scholar 

  149. Cremers SCLM, Pillai GC, Papapoulos SE. Pharmacokinetics/ Pharmacodynamics of bisphosphonates: use for optimization of intermittent therapy for osteoporosis. Clin Pharmacokinet. 2005;44(6):551–70.

    Article  CAS  PubMed  Google Scholar 

  150. Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int. 2008;74(11):1385–93.

    Article  CAS  PubMed  Google Scholar 

  151. Boonen S, Sellmeyer DE, Lippuner K, Orlov-Morozov A, Adams K, Messenbrink P. Renal safety of annual zoledronic acid infusions in osteoporotic postmenopausal women. Kidney Int. 2008;74(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  152. Bergner R, Henrich D, Hoffmann M, Schmidt-Gayk H, Lenz T, Upperkamp M. Treatment of reduced bone density with ibandronate in dialysis patients. J Nephrol. 2008;21(4):510–6.

    CAS  PubMed  Google Scholar 

  153. Jamal SA, Bauer DC, Ensrud KE, Cauley JA, Hochberg M, Ishani A, et al. Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Min Res. 2007;22(4):503–8.

    Article  CAS  Google Scholar 

  154. Miller PD, Roux C, Boonen S, Barton IP, Dunlop LE, Burgio DE. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Min Res. 2005;20(12):2105–15.

    Article  CAS  Google Scholar 

  155. Department of Transplant Surgery, University of California, San Francisco. Cirrhosis and end-stage liver disease (ESLD). 2015. http://www.transplant.surgery.ucsf.edu/conditions-procedures/cirrhosis.aspx. Accessed 25 Feb 2015.

  156. U.S. Department of Health and Human Services, Organ Procurement and Transplantation Network. Facts about transplantation in the United States. 2016. http://aasld.org/sties/default/files/Weekly%20Fact%20Sheet%2019FEB2016.pdf.

  157. Krol CG, Dekkers OM, Kroon HM, Rabelink TJ, van Hoek B, Hamdy NA. No association between BMD and prevalent vertebral fractures in liver transplant recipients at time of screening before transplantation. J Clin Endocrinol Metab. 2014;99(10):3677–85.

    Article  CAS  PubMed  Google Scholar 

  158. Guanabens N, Monegal A, Muxi A, Martinez-Ferrer A, Reyes R, Caballeria J, et al. Patients with cirrhosis and ascites have false values of bone density.: implications for the diagnosis of osteoporosis. Osteoporos Int. 2012;23(4):1481–7.

    Article  CAS  PubMed  Google Scholar 

  159. Alcade-Vargas A, Pascasio Acevedo JM, Gutierrez-Domingo I, Garcia-Jimenez R, Sousa Martin JM, Ferrier Rios MT, et al. Prevalence and characteristics of bone disease in cirrhotic patients under evaluation for liver transplantation. Transp Proceed. 2012;44(6):1496–8.

    Article  Google Scholar 

  160. Mahmoudi A, Sellier N, Reboul-Marty J, Chales G, Lalatonne Y, Bourcier V, et al. Bone mineral density assessed by dual-energy X-ray absorptiometry in patients with viral or alcoholic compensated cirrhosis: a prospective study. Clin Res Hepatol Gastroenterol. 2011;35(11):731–7.

    Article  CAS  PubMed  Google Scholar 

  161. Nair S. Vitamin D, deficiency and liver disease. Gastroenterol Hepatol. 2010;6(8):491–3.

    Google Scholar 

  162. Kalaitzakis E, Simren M, Olsson R, Henfridsson P, Hugosson I, Bengtsson M, et al. Gastrointestinal symptoms in patients with liver cirrhosis: associations with nutritional status and health-related quality of life. Scand J Gastroenterol. 2006;419(12):1464–72.

    Article  Google Scholar 

  163. Wang X, Li W, Zhang Y, Yang Y, Qin G. Association between vitamin D and non-alcoholic fatty liver disease /non-alcoholic steatohepatitis: results from a meta-analysis. Int J Clin Exp Med. 2015;8(10):17221–34.

    PubMed  PubMed Central  Google Scholar 

  164. Nelson JE, Roth CL, Wilson LA, Yates KP, Aouizerat B, Morgan-Stevenson V, et al. Vitamin D deficiency is associated with increased risk of non-alcoholic steatohepatitis in adults with nonalcoholic fatty liver disease: possible role for MAPK and NF-kβ. Am J Gastroenterol. 2016;111(6):852–63. doi:10.1038/ajg.2016.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Venu M, Martin E, Saeian K, Gawrieh ES. High prevalence of vitamin A and D deficiency in patients evaluated for liver transplantation. Liver Transpl. 2014;19(6):627–33.

    Article  Google Scholar 

  166. Bang CS, Shin IS, Lee SW, Kim JB, Balk GH, Suk KT, et al. Osteoporosis and bone fractures in alcoholic liver disease: a meta-analysis. World J Gastroenterol. 2015;21(13):4035–47.

    Article  Google Scholar 

  167. Yadav A, Carey EJ. Osteoporosis in chronic liver disease. Nutr Clin Pract. 2013;28(1):52–64.

    Article  PubMed  Google Scholar 

  168. Karatoprak O, Camurdan K, Ozturk, Ganiyusufoglu K, Aydogan M, Hamzaoglu A. Multiple-level cement vertebroplasty in patients with vertebral compression fractures from osteodystrophy in chronic liver disease. Acta Orthop Belg. 2008;74(4):566–8.

    PubMed  Google Scholar 

  169. U.S. Department of Health and Human Services, National Institute of Diabetes and Digestive and Kidney Diseases. Primary biliary cirrhosis. 2014. http://www.nidk.nih.gov/health-information/health-topics/liver-disease/primary-biliary-cirrhosis/Pages/facts.aspx,. Accessed 25 Feb 2015.

  170. Raszeja-Wyszomirska J, Miazgowski T. Osteoporosis in primary biliary cirrhosis of the liver. Prz Gastroenterol. 2014;9(2):82–7.

    Google Scholar 

  171. Menon KVN, Angulo P, Boe GM, Lindor KD. Safety and efficacy of estrogen therapy in preventing bone loss in primary biliary cirrhosis. Am J Gastroenterol. 2003;98(4):889–92.

    Article  CAS  PubMed  Google Scholar 

  172. Ormarsdottir S, Mallmin H, Naessen T, Petren-Mallmin M, Broome U, Hultcrantz R, et al. An open, randomized, controlled study of transdermal hormone replacement therapy on the rate of bone loss in primary biliary cirrhosis. J Intern Med. 2004;256(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  173. Musialik J, Petelenz M, Gonciarz Z. Effects of alendronate on bone mass in patients with primary biliary cirrhosis and osteoporosis: preliminary results after one year. Scand J Gastroenterol. 2005;40(7):873–4.

    Article  PubMed  Google Scholar 

  174. Zein CO, Jorgensen RA, Clarke B, Wenger D, Keach JC, Angulo P. Alendronate improves bone mineral density in primary biliary cirrhosis: a randomized placebo-controlled trial. Hepatology. 2005;42(4):762–71.

    Article  CAS  PubMed  Google Scholar 

  175. Guanabens N, Pares A, Ros I, Alvarez L, Pons F, Caballeria L, et al. Alendronate is more effective than etidronate for increasing bone mass in osteopenic patients with primary biliary cirrhosis. Am J Gastroenterol. 2003;98(10):2268–74.

    Article  CAS  PubMed  Google Scholar 

  176. Guanabens N, Monegal A, Cerda D, Muxi A, Gifra L, Perls P, et al. Randomized trial comparing monthly ibandronate and weekly alendronate for osteoporosis in patients with primary biliary cirrhosis. Hepatology. 2013;58(6):2070–8.

    Article  CAS  PubMed  Google Scholar 

  177. Angelo P. Strengthening the bones in primary biliary cirrhosis. Hepatology. 2013;58(6):1871–3.

    Article  Google Scholar 

  178. Treeprasertsuk S, Silveira MG, Petz JL, Lindor KD. Parenteral bisphosphonates for osteoporosis in patients with primary biliary cirrhosis. Am J Therap. 2011;18(5):375–81.

    Article  Google Scholar 

  179. Levy C, Harnois DM, Angulo P, Jorgensen R, Lindor KD. Raloxifene improves bone mass in osteopenic women with primary biliary cirrhosis: results of a pilot study. Liver Int. 2005;25(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  180. Camisasca M, Crosignani A, Baltezzati PM, Albisetti W, Grandinetti G, Pietrogrande L, et al. Parenteral calcitonin for metabolic bone disease associated with primary biliary cirrhosis. Hepatology. 1994;2(3):633–7.

    Article  Google Scholar 

  181. Rudic JS, Giljaca V, Krstic MN, Bjelakovic G, Glud C. Bisphosphonates for osteoporosis in primary biliary cirrhosis. Cochrane Database Syst Rev. 2011;(12):CD009144. doi:10.1002/14651858. CD009144. pub 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina V. Oleson .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oleson, C.V. (2017). Osteoporosis in Cardiopulmonary, Kidney and Liver Disorders. In: Osteoporosis Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-45084-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45084-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45082-7

  • Online ISBN: 978-3-319-45084-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics