Skip to main content

Osteoporosis in Gastrointestinal Diseases of Malabsorption and Inflammation

  • Chapter
  • First Online:
Osteoporosis Rehabilitation
  • 925 Accesses

Abstract

Chronic conditions affecting the gastrointestinal tract and its functions can have profound long-term effects on bone. Pathological conditions resulting in malabsorption of key vitamins and minerals, as well as altered metabolism of essential components of bone, can have lasting effects on bone health. Individuals with Crohn’s disease, ulcerative colitis, pancreatic insufficiency, celiac disease, and restrictive forms of bariatric surgery, as well as gastric bypass or partial small bowel resection, are at significant risk for osteoporosis. This chapter will cover these topics and offer strategies for clinician awareness and monitoring, diagnosis, and treatment approaches, both nonpharmacologic and pharmacologic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Targownik LE, Bernstein CN, Leslie WD. Inflammatory bowel disease and the risk of osteoporosis and fracture. Maturitas. 2013;76(4):315–9. doi:10.1016/j.maturitas.2013.09.009.

    Article  PubMed  Google Scholar 

  2. Wilkins T, Jarvis K, Patel J. Diagnosis and management of Crohn’s disease. Am Fam Physician. 2011;84(12):1365–75.

    PubMed  Google Scholar 

  3. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–76. doi:10.1056/NEJMra0804647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ali T, Lam D, Bronze MS, Humphrey MB. Osteoporosis in inflammatory bowel disease. Am J Med. 2009;122(7):599–604. doi:10.1016/j.amjmed.2009.01.022.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manolagas SC. The role of IL-6 type cytokines and their receptors in bone. Ann N Y Acad Sci. 1998;840:194–204.

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein CN, Sargent M, Leslie WD. Serum osteoprotegerin is increased in Crohn’s disease: a population-based case control study. Inflamm Bowel Dis. 2005;11(4):325–30.

    Article  PubMed  Google Scholar 

  7. Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut. 2005;54(4):479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  9. Wada Y, Hisamatsu T, Naganuma M, Matsuoka K, Okamoto S, Inoue N, et al. Risk factors for decreased bone mineral density in inflammatory bowel disease: a cross-sectional study. Clin Nutr. 2015;34(6):1202–9. doi:10.1016/j.cinu.2015.01.003.

    Article  PubMed  Google Scholar 

  10. Vestergaard P. Prevalence and pathogenesis of osteoporosis in patients with inflammatory bowel disease. Minerva Med. 2004;95(6):469–80.

    CAS  PubMed  Google Scholar 

  11. American Gastroenterological Association. Medical position statement: guidelines on osteoporosis in gastrointestinal diseases. Gastroenterol. 2003;124(3):791–4.

  12. Bernstein CN, Leslie WD, Leboff MS. AGA technical review on osteoporosis in gastrointestinal diseases. Gastroenterology. 2003;124(3):795–841.

    Article  PubMed  Google Scholar 

  13. Watkins J. Structure and function of the musculoskeletal system. 2nd ed. eBook: Human Kinetics; 2010.

    Google Scholar 

  14. Laakso S, Valta H, Verkasalo M, Toiviainen-Salo S, Mäkitie O. Compromised peak bone mass in patients with inflammatory bowel disease–a prospective study. J Pediatr. 2014;164(6):1436–43. doi:10.1016/j.jpeds.2014.01.073.

    Article  PubMed  Google Scholar 

  15. Wingate KE, Jacobson K, Issenman R, Carroll M, Barker C, Israel D, et al. 25-Hydroxyvitamin D concentrations in children with Crohn’s disease supplemented with either 2000 or 400 IU daily for 6 months: a randomized controlled study. J Pediatr. 2014;164(4):860–5. doi:10.1016/j.jpeds.2013.11.071.

    Article  CAS  PubMed  Google Scholar 

  16. Torii A, Toda G. Management of irritable bowel syndrome. Intern Med. 2004;43(5):353–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liebregts T, Adam B, Bredack C, Röth A, Heinzel S, Lester S, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007;132(3):913–20.

    Article  CAS  PubMed  Google Scholar 

  18. Whitehead WE, Palsson OS, Levy RR, Feld AD, Turner M, Von Korff M. Comorbidity in irritable bowel syndrome. Am J Gastroenterol. 2007;102(12):2767–76.

    Article  PubMed  Google Scholar 

  19. Stobaugh DJ, Deepak P, Ehrenpreis ED. Increased risk of osteoporosis-related fractures in patients with irritable bowel syndrome. Osteoporos Int. 2013;24(4):1169–75. doi:10.1007/s00198-012-2141-4.

    Article  CAS  PubMed  Google Scholar 

  20. Cremon C, Carini G, Wang B, Vasina V, Cogliandro RF, De Giorgio R, et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am J Gastroenterol. 2011;106(7):1290–8. doi:10.1038/ajg.2011.86.

    Article  CAS  PubMed  Google Scholar 

  21. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414.

    Article  CAS  PubMed  Google Scholar 

  22. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with different types of oral corticosteroids and effect of termination of corticosteroids on the risk of fractures. Calcif Tissue Int. 2008;82(4):249–57. doi:10.1007/s00223-008-9124-7.

    Article  CAS  PubMed  Google Scholar 

  23. Schoon EJ, Bollani S, Mills PR, Israeli E, Felsenberg D, Ljunghall S, et al. Bone mineral density in relation to efficacy and side effects of budesonide and prednisolone in Crohn's disease. Clin Gastroenterol Hepatol. 2005;3(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  24. Pazianas M, Rhim AD, Weinberg AM, Su C, Lichtenstein GR. The effect of anti-TNF-alpha therapy on spinal bone mineral density in patients with Crohn's disease. Ann N Y Acad Sci. 2006;1068:543–56.

    Article  CAS  PubMed  Google Scholar 

  25. Lewis NR, Scott BB. Guidelines for osteoporosis in inflammatory bowel disease and coeliac disease. British Society of Gastroenterology. 2007. http://bsg.org.uk.

  26. Henderson S, Hoffman N, Prince R. A double-blind placebo-controlled study of the effects of the bisphosphonate risedronate on bone mass in patients with inflammatory bowel disease. Am J Gastroenterol. 2006;101:119–23.

    Article  CAS  PubMed  Google Scholar 

  27. Palomba S, Manguso F, Orio Jr F, Russo T, Oppedisano R, Sacchinelli A, et al. Effectiveness of risedronate in osteoporotic postmenopausal women with inflammatory bowel disease: a prospective, parallel, open-label, two-year extension study. Menopause. 2008;15(4 Pt 1):730–6. doi:10.1097/gme.0b013e318159f190.

    Article  PubMed  Google Scholar 

  28. Guo Z, Wu R, Gong J, Zhu W, Li Y, Li N, et al. The efficacy and safety of bisphosphonates for osteoporosis or osteopenia in Crohn’s disease: a meta-analysis. Dig Dis Sci. 2013;58(4):915–22. doi:10.1007/s10620-012-2465-0.

    Article  CAS  PubMed  Google Scholar 

  29. Haderslev KV, Tjellesen L, Sorensen HA, Staun M. Alendronate increases lumbar spine bone mineral density in patients with Crohn’s disease. Gastroenterology. 2000;119(3):639–46.

    Article  CAS  PubMed  Google Scholar 

  30. Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin Ther. 2001;23(8):1296–310.

    Article  CAS  PubMed  Google Scholar 

  31. Coaccioli S, Celi G, Crapa ME, Masia F, Brandi ML. Alendronate soluble solution: a higher adherence rate in the treatment of osteoporosis. Clin Cases Miner Bone Metab. 2014;11(2):123–5.

    PubMed  PubMed Central  Google Scholar 

  32. Siffledeen JS, Fedorak RN, Siminoski K, Jen H, Vaudan E, Abraham N, et al. Randomized trial of etidronate plus calcium and vitamin D for treatment of low bone mineral density in Crohn’s disease. Clin Gastroenterol Hepatol. 2005;3(2):122–32.

    Article  CAS  PubMed  Google Scholar 

  33. Bartram SA, Peaston RT, Rawlings DJ, Francis RM, Thompson NP. A randomized controlled trial of calcium with vitamin D, alone or in combination with intravenous pamidronate, for the treatment of low bone mineral density associated with Crohn’s disease. Aliment Pharmacol Ther. 2003;18(11-12):1121–7.

    Article  CAS  PubMed  Google Scholar 

  34. Klaus J, Reinshagen M, Herdt K, Adler G, von Boyen GB, von Tirpitz C. Intravenous ibandronate or sodium-fluoride–a 3.5 years study on bone density and fractures in Crohn's disease patients with osteoporosis. J Gastrointestin Liver Dis. 2011;20(2):141–8.

    PubMed  Google Scholar 

  35. Guanche MM, Oleson CV. Poster 288 Rehabilitation of severe vitamin D deficiency secondary to gastric bypass surgery. PM&R. 2011;3(10):S271. doi:10.1016/j.pmrj.2011.08.315.

    Article  Google Scholar 

  36. Heber D, Greenway FL, Kaplan LM, Livingston E, Salvador J, Still C, Endocrine Society. Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(11):4823–43. doi:10.1210/jc.2009-2128.

    Article  CAS  PubMed  Google Scholar 

  37. Scibora LM, Ikramuddin S, Buchwald H, Petit MA. Examining the link between bariatric surgery, bone loss, and osteoporosis: a review of bone density studies. Obes Surg. 2012;22(4):654–67. doi:10.1007/s11695-012-0596-1.

    Article  PubMed  Google Scholar 

  38. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19(12):1605–11. doi:10.1007/s11695-009-0014-5.

    Article  PubMed  Google Scholar 

  39. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36. doi:10.1007/s11695-012-0864-0.

    Article  PubMed  Google Scholar 

  40. American Society for Metabolic and Bariatric Surgery. Estimate of bariatric surgery numbers 2014. http://asmbs.org/resources/estimate-of-bariatric-surgery-numbers. Accessed 2015.

  41. Smith BR, Schauer P, Nguyen NT. Surgical approaches to the treatment of obesity: bariatric surgery. Endocrinol Metab Clin N Am. 2008;37(4):943–64.

    Article  Google Scholar 

  42. Brolin RE. Bariatric surgery and long-term control of morbid obesity. JAMA. 2002;288(22):2793–6.

    Article  PubMed  Google Scholar 

  43. Himpens J, Cadière GB, Bazi M, Vouche M, Cadière B, Dapri G. Long-term outcomes of laparoscopic adjustable gastric banding. Arch Surg. 2011;146(7):802–7. doi:10.1001/archsurg.2011.45.

    Article  PubMed  Google Scholar 

  44. DeMaria EJ, Sugerman HJ, Meador JG, Doty JM, Kellum JM, Wolfe L, et al. High failure rate after laparoscopic adjustable silicone gastric banding for treatment of morbid obesity. Ann Surg. 2001;233(6):809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Braghetto I, Korn O, Valladares H, Gutiérrez L, Csendes A, Debandi A, et al. Laparoscopic sleeve gastrectomy: surgical technique, indications and clinical results. Obes Surg. 2007;17(11):1442–50.

    Article  PubMed  Google Scholar 

  46. D’Hondt M, Vanneste S, Pottel H, Devriendt D, Van Rooy F, Vansteenkiste F. Laparoscopic sleeve gastrectomy as a single-stage procedure for the treatment of morbid obesity and the resulting quality of life, resolution of comorbidities, food tolerance, and 6-year weight loss. Surg Endosc. 2011;25(8):2498–504. doi:10.1007/s00464-011-1572-x.

    Article  PubMed  Google Scholar 

  47. Bal BS, Finelli FC, Shope TR, Koch TR. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8(9):544–56. doi:10.1038/nrendo.2012.48.

    Article  CAS  PubMed  Google Scholar 

  48. Carter PR, LeBlanc KA, Hausmann MG, Kleinpeter KP, de Barros SN, Jones SM. Association between gastroesophageal reflux disease and laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2011;7(5):569–72. doi:10.1016/j.soard.2011.01.040.

    Article  PubMed  Google Scholar 

  49. Levine MS, Carucci LR. Imaging of bariatric surgery: normal anatomy and postoperative complications. Radiology. 2014;270(2):327–41.

    Article  PubMed  Google Scholar 

  50. Scopinaro N, Gianetta E, Friedman D. Biliopancreatic diversion for obesity. Probl Gen Surg. 1992;9:362–9.

    Google Scholar 

  51. DeMeester TR, Fuchs KH, Ball CS, Albertucci M, Smyrk TC, Marcus JN. Experimental and clinical results with proximal end-to-end duodenojejunostomy for pathologic duodenogastric reflux. Ann Surg. 1987;206(4):414–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lagace M, Marceau P, Marceau S, Hould FS, Potvin M, Bourque RA, et al. Biliopancreatic diversion with a new type of gastrectomy: some previous conclusions revisited. Obes Surg. 1995;5(4):411–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hess DS, Hess DW. Biliopancreatic diversion with duodenal switch. Obes Surg. 1998;8(3):262–82.

    Article  Google Scholar 

  54. Aasheim ET, Björkman S, Søvik TT, Engström M, Hanvold SE, Mala T, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90(1):15–22. doi:10.3945/ajcn.2009.27583.

    Article  PubMed  Google Scholar 

  55. Mechanick JI, Kushner RF, Sugerman HJ, Gonzalez-Campoy JM, Collazo-Clavel ML, Guven S, et al. Executive summary of the recommendations of the American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Endocr Pract. 2008;14(3):318–36.

    Article  PubMed  Google Scholar 

  56. Brolin RE, LaMarca LB, Kenler HA, Cody RP. Malabsorptive gastric bypass in patients with superobesity. J Gastrointest Surg. 2002;6(2):195–203.

    Article  PubMed  Google Scholar 

  57. Bloomberg RD, Fleishman A, Nalle JE, Herron DM, Kini S. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15(2):145–54.

    Article  PubMed  Google Scholar 

  58. Lakhani SV, Shah HN, Alexander K, Finelli FC, Kirkpatrick JR, Koch TR. Small intestinal bacterial overgrowth and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients. Nutr Res. 2008;28(5):293–8. doi:10.1016/j.nutres.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  59. Teitleman M, Katzka DA. A case of polyneuropathy after gastric bypass surgery. MedGenMed. 2005;7(2):21.

    PubMed  PubMed Central  Google Scholar 

  60. Nakamura K, Roberson ED, Reilly LG, Tsao JW. Polyneuropathy following gastric bypass surgery. Am J Med. 2003;115:679–80.

    Article  PubMed  Google Scholar 

  61. Maryniak O. Severe peripheral neuropathy following gastric bypass surgery for morbid obesity. Can Med Assoc J. 1984;131(2):119–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Aarts EO, Janssen IM, Berends FJ. The gastric sleeve: losing weight as fast as micronutrients? Obes Surg. 2011;21(2):207–11. doi:10.1007/s11695-010-0316-7.

    Article  PubMed  Google Scholar 

  63. Aills L, Blankenship J, Buffington C, Furtado M, Parrott J. American Society for Metabolic and Bariatric Surgery allied nutritional guidelines for the surgical weight loss patient. Surg Obes Relat Dis. 2008;4(5 Suppl):S73–108. doi:10.1016/j.soard.2008.03.002.

  64. Zittel TT, Zeeb B, Maier GW, Kaiser GW, Zwirner M, Liebich H, et al. High prevalence of bone disorders after gastrectomy. Am J Surg. 1997;174(4):431–8.

    Article  CAS  PubMed  Google Scholar 

  65. Giusti V, Gasteyger C, Suter M, Heraief E, Gaillard RC, Burckhardt P. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes (Lond). 2005;29:1429–35.

    Article  CAS  Google Scholar 

  66. Cundy T, Evans MC, Kay RG, Dowman M, Wattie D, Reid IR. Effects of vertical-banded gastroplasty on bone and mineral metabolism in obese patients. Br J Surg. 1996;83(10):1468–72.

    Article  CAS  PubMed  Google Scholar 

  67. Serra Aracil X, Bombardó Juncá J, Mora López L, Alcantara Moral M, Ayguavives Garnica I, Darnell Marti A, et al. Site of local surgery in adenocarcinoma of the rectum T2N0M0. Cir Esp. 2009;85(2):103–9. doi:10.1016/j.ciresp.2008.09.007.

    Article  PubMed  Google Scholar 

  68. Vilarrasa N, Gómez JM, Elio I, Gómez-Vaquero C, Masdevall C, Pujol J, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19(7):860–6. doi:10.1007/s11695-009-9843-5.

    Article  PubMed  Google Scholar 

  69. Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93(10):3735–40. doi:10.1210/jc.2008-0481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bruno C, Fulford AD, Potts JR, McClintock R, Jones R, Cacucci BM, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95(1):159–66. doi:10.1210/jc.2009-0265.

    Article  CAS  PubMed  Google Scholar 

  71. Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89(3):1061–5.

    Article  CAS  PubMed  Google Scholar 

  72. Pugnale N, Giusti V, Suter M, Zysset E, Héraïef E, Gaillard RC, et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes Relat Metab Disord. 2003;27(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  73. von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. 2004;53(7):918–21.

    Article  Google Scholar 

  74. Hsin MC, Huang CK, Tai CM, Yeh LR, Kuo HC, Garg A. A case-matched study of the differences in bone mineral density 1 year after 3 different bariatric procedures. Surg Obes Relat Dis. 2015;11(1):181–5. doi:10.1016/j.soard.2014.07.008.

    Article  PubMed  Google Scholar 

  75. Tsiftsis DD, Mylonas P, Mead N, Kalfarentzos F, Alexandrides TK. Bone mass decreases in morbidly obese women after long limb-biliopancreatic diversion and marked weight loss without secondary hyperparathyroidism. A physiological adaptation to weight loss? Obes Surg. 2009;19(11):1497–503. doi:10.1007/s11695-009-9938-z.

    Article  PubMed  Google Scholar 

  76. Nakamura KM, Haglind EG, Clowes JA, Achenbach SJ, Atkinson EJ, Melton 3rd LJ, et al. Fracture risk following bariatric surgery: a population-based study. Osteoporos Int. 2014;25(1):151–8. doi:10.1007/s00198-013-2463-x.

    Article  CAS  PubMed  Google Scholar 

  77. Gjessing HR, Nielsen HJ, Mellgren G, Gudbrandsen OA. Energy intake, nutritional status and weight reduction in patients one year after laparoscopic sleeve gastrectomy. SpringerPlus. 2013;2:352–7.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Williams SE. Metabolic bone disease in the bariatric surgery patient. J Obes. 2011;2011:634614. doi:10.1155/2011/634614.

    Article  PubMed  Google Scholar 

  79. Panda S, Sharma K. Osteomalacia induced peripheral neuropathy after obesity reduction surgery. Ann Indian Acad Neurol. 2013;16(4):690–2. doi:10.4103/0972-2327.120466.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Irani PF. Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry. 1976;39(7):686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Georgoulas TI, Tournis S, Lyritis GP. Development of osteomalacic myopathy in a morbidly obese woman following bariatric surgery. J Musculoskelet Neuronal Interact. 2010;10(4):287–9.

    CAS  PubMed  Google Scholar 

  82. Suzuki Y, Ishibashi Y, Omura N, Kawasaki N, Kashiwagi H, Yanaga K, et al. Alendronate improves vitamin D-resistant osteopenia triggered by gastrectomy in patients with gastric cancer followed long term. J Gastrointest Surg. 2005;9(7):955–60.

    Article  PubMed  Google Scholar 

  83. Alborzi F, Leibowitz AB. Immobilization hypercalcemia in critical illness following bariatric surgery. Obes Surg. 2002;12(6):871–3.

    Article  PubMed  Google Scholar 

  84. Thaisetthawatkul P, Collazo-Clavell ML, Sarr MG, Norell JE, Dyck PJ. A controlled study of peripheral neuropathy after bariatric surgery. Neurology. 2004;63(8):1462–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina V. Oleson .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oleson, C.V. (2017). Osteoporosis in Gastrointestinal Diseases of Malabsorption and Inflammation. In: Osteoporosis Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-45084-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45084-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45082-7

  • Online ISBN: 978-3-319-45084-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics