Skip to main content

The Medial Prefrontal Cortex is a Critical Hub in the Declarative Memory System

  • Chapter
  • First Online:
Cognitive Neuroscience of Memory Consolidation

Abstract

What enables us to acquire and use our knowledge? The classical declarative memory system with the hippocampus at its core appears not sufficient to explain knowledge acquisition and retrieval satisfactorily. Recent evidence suggests an extension of this classical model by assigning the medial prefrontal cortex a particular, yet not fully defined role in long-term memory. This chapter will integrate data derived from experiments with rodents and humans providing the basis for an extended declarative memory system that includes the medial prefrontal cortex. Here, I discuss how the medial prefrontal cortex, interacting with the medial temporal lobe, posterior representational areas and specific subcortical structures, may help obtain, integrate and apply our knowledge for long-term usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–444

    PubMed  Google Scholar 

  • Bein O, Reggev N, Maril A (2014) Prior knowledge influences on hippocampus and medial prefrontal cortex interactions in subsequent memory. Neuropsychologia 64:320–330

    Article  PubMed  Google Scholar 

  • Bero AW, Meng J, Cho S, Shen AH, Canter RG, Ericsson M, Tsai LH (2014) Early remodeling of the neocortex upon episodic memory encoding. Proc Nat Acad Sci U S A 111:11852–11857

    Google Scholar 

  • Bonnici HM, Chadwick MJ, Lutti A, Hassabis D, Weiskopf N, Maguire EA (2012) Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. J Neurosci 32:16982–16991

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontempi B, Laurent-Demir C, Destrade C, Jaffard R (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400:671–675

    Article  PubMed  Google Scholar 

  • Brod G, Lindenberger U, Werkle-Bergner M, Shing YL (2015) Differences in the neural signature of remembering schema-congruent and schema-incongruent events. Neuroimage 117:358–366

    Article  PubMed  Google Scholar 

  • Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52

    Google Scholar 

  • Davoodi FG, Motamedi F, Akbari E, Ghanbarian E, Jila B (2011) Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task. Behav Brain Res 221:1–6

    Article  PubMed  Google Scholar 

  • Ding HK, Teixeira CM, Frankland PW (2008) Inactivation of the anterior cingulate cortex blocks expression of remote, but not recent, conditioned taste aversion memory. Learn Mem 15:290–293

    Article  PubMed  Google Scholar 

  • Euston DR, Tatsuno M, McNaughton BL (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318:1147–1150

    Article  PubMed  Google Scholar 

  • Frankland PW, O’Brien C, Ohno M, Kirkwood A, Silva AJ (2001) Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411:309–313

    Article  PubMed  Google Scholar 

  • Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304:881–883

    Article  PubMed  Google Scholar 

  • Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, Rauchs G, Schabus M, Sterpenich V, Vandewalle G, Maquet P, Peigneux P (2007) Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A 104:18778–18783

    Google Scholar 

  • Gilboa A, Alain C, He Y, Stuss DT, Moscovitch M (2009) Ventromedial prefrontal cortex lesions produce early functional alterations during remote memory retrieval. J Neurosci 29:4871–4881

    Article  PubMed  Google Scholar 

  • Ghosh VE, Moscovitch M, Melo Colella B, Gilboa A (2014) Schema representation in patients with ventromedial PFC lesions. J Neurosci 34:12057–12070

    Article  PubMed  Google Scholar 

  • Hebb D (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hebscher M, Barkan-Abramski M, Goldsmith M, Aharon-Peretz J, Gilboa A (2016) Memory, decision-making, and the ventromedial prefrontal cortex (vmPFC): the roles of subcallosal and posterior orbitofrontal cortices in monitoring and control processes. Cereb Cortex 26(12):4590–4601

    Google Scholar 

  • Hoover WB, Vertes RP (2012) Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Struct Funct 217:191–209

    Article  PubMed  Google Scholar 

  • Kan IP, Larocque KF, Lafleche G, Coslett HB, Verfaellie M (2010) Memory monitoring failure in confabulation: evidence from the semantic illusion paradigm. J Int Neuropsychol Soc 16:1006–1017

    Article  PubMed  Google Scholar 

  • Kumaran D, Summerfield JJ, Hassabis D, Maguire EA (2009) Tracking the emergence of conceptual knowledge during human decision making. Neuron 63:889–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZX, Grady C, Moscovitch M (in press) Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cerebral Cortex

    Google Scholar 

  • McClelland JL (2013) Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. J Exp Psychol Gen 142:1190–11210

    Article  PubMed  Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419–457

    Article  PubMed  Google Scholar 

  • Milton F, Muhlert N, Butler CR, Smith A, Benattayallah A, Zeman AZ (2011) An fMRI study of long-term everyday memory using SenseCam. Memory 19:733–744

    Article  PubMed  Google Scholar 

  • O’Connor MG, Lafleche GM (2004) Retrograde amnesia in patients with rupture and surgical repair of anterior communicating artery aneurysms. J Int Neuropsychol Soc 10:221–229

    PubMed  Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12:919–926

    Article  PubMed  Google Scholar 

  • Piray P, Toni I, Cools R (2016) Human choice strategy varies with anatomical projections from ventromedial prefrontal cortex to medial striatum. J Neurosci 36:2857–2867

    Article  PubMed  Google Scholar 

  • Quinn JJ, Ma QD, Tinsley MR, Koch C, Fanselow MS (2008) Inverse temporal contributions of the dorsal hippocampus and medial prefrontal cortex to the expression of long-term fear memories. Learn Mem 15:368–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards BA, Xia F, Santoro A, Husse J, Woodin MA, Josselyn SA, Frankland PW (2014) Patterns across multiple memories are identified over time. Nat Neurosci 17:981–986

    Article  PubMed  Google Scholar 

  • Roediger HL, McDermott KB (1995) Creating false memories remembering words not presented in lists. J Exp Psychol Learn Mem Cogn 4:803–814

    Article  Google Scholar 

  • Rudoy JD, Voss JL, Westerberg CE, Paller KA (2009) Strengthening individual memories by reactivating them during sleep. Science 326:1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwindel CD, McNaughton BL (2011) Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Prog Brain Res 193:163–177

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu E, Tang YP, Rampon C, Tsien JZ (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290:1170–1174

    Article  PubMed  Google Scholar 

  • Sommer T (in press) The emergence of knowledge and how it supports the memory for novel related information. Cerebal Cortex

    Google Scholar 

  • Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5:169–177

    Article  PubMed  Google Scholar 

  • Sterpenich V, Albouy G, Darsaud A, Schmidt C, Vandewalle G, Dang Vu TT, Desseilles M, Phillips C, Degueldre C, Balteau E, Collette F, Luxen A, Maquet P (2009) Sleep promotes the neural reorganization of remote emotional memory. J Neurosci 29:5143–5152

    Article  PubMed  Google Scholar 

  • Stolk A, D’Imperio D, di Pellegrino G, Toni I (2015) Altered communicative decisions following ventromedial prefrontal lesions. Curr Biol 25:1469–1474

    Article  PubMed  Google Scholar 

  • Takehara K, Kawahara S, Kirino Y (2003) Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J Neurosci 23:9897–9905

    PubMed  Google Scholar 

  • Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, McNaughton BL, Fernández G (2006) Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc Nat Acad Sci U S A 103:756–761

    Google Scholar 

  • Takehara-Nishiuchi K, Nakao K, Kawahara S, Matsuki N, Kirino Y (2006) Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J Neurosci 26:5049–5058

    Article  PubMed  Google Scholar 

  • Takehara-Nishiuchi K, McNaughton BL (2008) Spontaneous changes of neocortical code for associative memory during consolidation. Science 322:960–963

    Article  PubMed  Google Scholar 

  • Takashima A, Nieuwenhuis IL, Jensen O, Talamini LM, Rijpkema M, Fernández G (2009) Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci 29:10087–10093

    Article  PubMed  Google Scholar 

  • Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ (2014) Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84:347–354

    Article  PubMed  Google Scholar 

  • Thielen JW, Takashima A, Rutters F, Tendolkar I, Fernández G (2015) Transient relay function of midline thalamic nuclei during long-term memory consolidation in humans. Learn Mem 22:527–531

    Article  PubMed  PubMed Central  Google Scholar 

  • Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RG (2007) Schemas and memory consolidation. Science 316:76–82

    Article  PubMed  Google Scholar 

  • Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011) Schema-dependent gene activation and memory encoding in neocortex. Science 333:891–895

    Article  PubMed  Google Scholar 

  • Turner MS, Cipolotti L, Yousry TA, Shallice T (2008) Confabulation: damage to a specific inferior medial prefrontal system. Cortex 44:637–648

    Article  PubMed  Google Scholar 

  • van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • van Dongen EV, Takashima A, Barth M, Fernández G (2011) Functional connectivity during light sleep is correlated with memory performance for face-location associations. Neuroimage 57:262–270

    Article  PubMed  Google Scholar 

  • van Dongen EV, Takashima A, Barth M, Zapp J, Schad LR, Paller KA, Fernández G (2012) Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci U S A 109:10575–10580

    Google Scholar 

  • van Kesteren MT, Rijpkema M, Ruiter DJ, Fernández G (2010a) Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J Neurosci 30:15888–15894

    Article  PubMed  Google Scholar 

  • van Kesteren MT, Fernández G, Norris DG, Hermans EJ (2010b) Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A 107:7550–7555

    Google Scholar 

  • van Kesteren MT, Beul SF, Takashima A, Henson RN, Ruiter DJ, Fernández G (2013) Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: from congruent to incongruent. Neuropsychologia 51:2352–2359

    Article  PubMed  Google Scholar 

  • van Kesteren MT, Rijpkema M, Ruiter DJ, Morris RG, Fernández G (2014) Building on prior knowledge: schema-dependent encoding processes relate to academic performance. J Cogn Neurosci 26:2250–2261

    Article  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neuro 499:768–796

    Article  Google Scholar 

  • Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71:601–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira PA, Korzus E (2015) CBP-Dependent memory consolidation in the prefrontal cortex supports object-location learning. Hippocampus 25:1532–1540

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner IC, van Buuren M, Kroes MC, Gutteling TP, van der Linden M, Morris RG, Fernández G (2015) Schematic memory components converge within angular gyrus during retrieval. eLIFE 4:e09668

    Google Scholar 

  • Warren DE, Jones SH, Duff MC, Tranel D (2014) False recall is reduced by damage to the ventromedial prefrontal cortex: implications for understanding the neural correlates of schematic memory. J Neurosci 34:7677–7682

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler AL, Teixeira CM, Wang AH, Xiong X, Kovacevic N, Lerch JP, McIntosh AR, Parkinson J (2013) Frankland PW identification of a functional connectome for long-term fear memory in mice. PLoS Comput Biol 9:e1002853

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Südhof TC (2013) A neural circuit for memory specificity and generalization. Science 339:1290–1295

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeithamova D, Dominick AL, Preston AR (2012) Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75:168–179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillén Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, G. (2017). The Medial Prefrontal Cortex is a Critical Hub in the Declarative Memory System. In: Axmacher, N., Rasch, B. (eds) Cognitive Neuroscience of Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-45066-7_3

Download citation

Publish with us

Policies and ethics