Skip to main content

Memory Manipulation During Sleep: Fundamental Advances and Possibilities for Application

  • Chapter
  • First Online:
Book cover Cognitive Neuroscience of Memory Consolidation

Abstract

Sleep is critically involved in cognitive functioning through content-specific information processing. Importantly, recent findings consistently show that these processes can be actively manipulated. For instance, by interfering with brain activity directly, or by presenting memory cues during sleep. This chapter will discuss recent advances in this field, considering basic research in both animals and human participants. Initial steps toward possible applications of sleep-related memory manipulations will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antony JW, Gobel EW, O’Hare JK, Reber PJ, Paller KA (2012) Cued memory reactivation during sleep influences skill learning. Nat Neurosci 15(8):1114–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Arzi A et al (2012) Humans can learn new information during sleep. Nat Neurosci 15(10):1460–1465

    Article  PubMed  Google Scholar 

  • Arzi A et al (2014) Olfactory aversive conditioning during sleep reduces cigarette-smoking behavior. J Neurosci: Official J Soc Neurosci 34(46):15382–15393

    Article  Google Scholar 

  • Atherton LA, Dupret D, Mellor JR (2015) Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 38(9):560–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes DC, Wilson DA (2014) Slow-wave sleep-imposed replay modulates both strength and precision of memory. J Neurosci: Official J Soc Neurosci 34(15):5134–5142

    Article  Google Scholar 

  • Bastuji H, García-Larrea L (1999) Evoked potentials as a tool for the investigation of human sleep. Sleep Med Rev 3:23–45

    Article  PubMed  Google Scholar 

  • Beijamini F, Pereira SIR, Cini FA, Louzada FM (2014) After being challenged by a video game problem, sleep increases the chance to solve it. PLoS ONE 9(1):e84342

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendor D, Wilson MA (2012) Biasing the content of hippocampal replay during sleep. Nat Neurosci 15(10):1439–1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergmann TO et al (2012) EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci: Official J Soc Neurosci 32(1):243–253

    Article  Google Scholar 

  • Born J, Rasch B, Gais S (2006) Sleep to remember. Neuroscientist 12(5):410–424

    Article  PubMed  Google Scholar 

  • Buzsaki G (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6(2):81–92

    Article  PubMed  Google Scholar 

  • Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC (2009) REM, not incubation, improves creativity by priming associative networks. Proc Natl Acad Sci 106(25):10130–10134

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens Z, Fabo D, Halasz P (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132(2):529–535

    Article  PubMed  Google Scholar 

  • Clemens Z, Fabo D, Halasz P (2006) Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci Lett 403(1–2):52–56

    Article  PubMed  Google Scholar 

  • Clemens Z et al (2007) Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130(Pt 11):2868–2878

    Article  PubMed  Google Scholar 

  • Cox R, Hofman WF, Talamini LM (2012) Involvement of spindles in memory consolidation is slow wave sleep-specific. Learn Mem 19(7):264–267

    Article  PubMed  Google Scholar 

  • Cox R, Hofman WF, de Boer M, Talamini LM (2014a) Local sleep spindle modulations in relation to specific memory cues. Neuroimage 99:103–110

    Article  PubMed  Google Scholar 

  • Cox R, van Driel J, de Boer M, Talamini LM (2014b) Slow oscillations during sleep coordinate interregional communication in cortical networks. J Neurosci: Official J Soc Neurosci 34(50):16890–16901

    Article  Google Scholar 

  • Cox C, Korjoukov I, de Boer M, Talamini LM (2014c) Sound asleep: Processing and retention of slow oscillation phase-targeted stimuli. PLoS ONE 9(7):e101567

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lavilleon G, Lacroix MM, Rondi-Reig L, Benchenane K (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci 18(4):493–495

    Article  PubMed  Google Scholar 

  • Deliens G, Gilson M, Schmitz R, Peigneux P (2012) Sleep unbinds memories from their emotional context. Cortex J Devoted Study Nerv Syst Behav

    Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Emmons WH, Simon CW (1956) The non-recall of material presented during sleep. Am J Psychol 69(1):76–81

    Article  PubMed  Google Scholar 

  • Fox BH, Robbin JS (1952) The retention of material presented during sleep. J Exp Psychol 43(1):75–79

    Article  PubMed  Google Scholar 

  • Frank MG (2015) Sleep and synaptic plasticity in the developing and adult brain. Curr Topics Behav Neurosci 25:123–149

    Article  Google Scholar 

  • Gais S, Molle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle density. J Neurosci: Official J Soc Neurosci 22(15):6830–6834

    Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12(10):1222–1223

    Article  PubMed  Google Scholar 

  • Gujar N, Yoo SS, Hu P, Walker MP (2011) Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J Neurosci: Official J Soc Neurosci 31(12):4466–4474

    Article  Google Scholar 

  • Gupta AS, van der Meer MA, Touretzky DS, Redish AD (2010) Hippocampal replay is not a simple function of experience. Neuron 65(5):695–705

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauner KK, Howard JD, Zelano C, Gottfried JA (2013) Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci 16(11):1553–1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman KL et al (2007) The upshot of up states in the neocortex: from slow oscillations to memory formation. J Neurosci: Official J Soc Neurosci 27(44):11838–11841

    Article  Google Scholar 

  • Hofman WF, Cox R, Talamini LM (2010) Effects of an emotional film on sleep EEG: relation with emotional attenuation over sleep. J Sleep Res 19(Suppl. 2):134

    Google Scholar 

  • Holleman E, Battaglia FP (2015) Memory consolidation, replay, and cortico-hippocampal interactions. Analysis and modeling of coordinated multi-neuronal activity, Springer, Berlin, pp 207–221

    Google Scholar 

  • Hutcheon BY, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  Google Scholar 

  • Jefferys JGH, Haas HL (1982) Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300:448–450

    Article  PubMed  Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107

    Article  PubMed  Google Scholar 

  • Kaestner EJ, Wixted JT, Mednick SC (2013) Pharmacologically increasing sleep spindles enhances recognition for negative and high-arousal memories. J Cogn Neurosci

    Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156

    Article  PubMed  Google Scholar 

  • Marshall L, Molle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci: Official J Soc Neurosci 24(44):9985–9992

    Article  Google Scholar 

  • Marshall L, Helgadottir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613

    Article  PubMed  Google Scholar 

  • Marshall L, Kirov R, Brade J, Mölle M, Born J (2011) Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 6(2):e16905

    Article  PubMed  PubMed Central  Google Scholar 

  • Mednick SC et al (2013) The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci: Official J Soc Neurosci 33(10):4494–4504

    Article  Google Scholar 

  • Mölle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci: Official J Soc Neurosci 22(24):10941–10947

    Google Scholar 

  • Ngo HV, Claussen JC, Born J, Molle M (2013a) Induction of slow oscillations by rhythmic acoustic stimulation. J Sleep Res 22(1):22–31

    Article  PubMed  Google Scholar 

  • Ngo HV, Martinetz T, Born J, Molle M (2013b) Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78(3):545–553

    Article  PubMed  Google Scholar 

  • Ngo HV et al (2015) Driving sleep slow oscillations by auditory closed-loop stimulation-a self-limiting process. J Neurosci: Official J Soc Neurosci 35(17):6630–6638

    Article  Google Scholar 

  • O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. Trends Neurosci 33(5):220–229

    Article  PubMed  Google Scholar 

  • Oudiette D, Antony JW, Creery JD, Paller KA (2013) The role of memory reactivation during wakefulness and sleep in determining which memories endure. J Neurosci: Official J Soc Neurosci 33(15):6672–6678

    Article  Google Scholar 

  • Pace-Schott EF et al (2011) Napping promotes inter-session habituation to emotional stimuli. Neurobiol Learn Mem 95(1):24–36

    Article  PubMed  Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12(7):919–926

    Article  PubMed  Google Scholar 

  • Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasch B, Buchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315(5817):1426–1429

    Article  PubMed  Google Scholar 

  • Rihm JS, Diekelmann S, Born J, Rasch B (2014) Reactivating memories during sleep by odors: odor specificity and associated changes in sleep oscillations. J Cogn Neurosci 26(8):1806–1818

    Article  PubMed  Google Scholar 

  • Rudoy JD, Voss JL, Westerberg CE, Paller KA (2009) Strengthening individual memories by reactivating them during sleep. Science 326(5956):1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadowski JH, Jones MW, Mellor JR (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell reports 14(8):1916–1929

    Article  PubMed  PubMed Central  Google Scholar 

  • Santostasi G et al (2016) Phase-locked loop for precisely timed acoustic stimulation during sleep. J Neurosci Methods 259:101–114

    Article  PubMed  Google Scholar 

  • Schmidt C et al (2006) Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci: Official J Soc Neurosci 26(35):8976–8982

    Article  Google Scholar 

  • Schreiner T, Rasch B (2014) Boosting vocabulary learning by verbal cueing during sleep. Cereb Cortex

    Google Scholar 

  • Schreiner T, Lehmann M, Rasch B (2015) Auditory feedback blocks memory benefits of cueing during sleep. Nat Commun 6:8729

    Article  PubMed  PubMed Central  Google Scholar 

  • Staresina BP et al (2015) Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci 18(11):1679–1686

    Article  PubMed  PubMed Central  Google Scholar 

  • Stickgold R (2013) Parsing the role of sleep in memory processing. Curr Opin Neurobiol 23(5):847–853

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweegers CC, Talamini LM (2014) Generalization from episodic memories across time: a route for semantic knowledge acquisition. Cortex J Devoted Study Nerv Syst Behav 59:49–61

    Article  Google Scholar 

  • Talamini LM, Bringmann LF, De Boer M, Hofman WF (2013) Sleeping worries away or worrying away sleep? Physiological evidence on sleep-emotion interactions. PLoS ONE 8(5):1–10

    Article  Google Scholar 

  • Talamini LM, van Poppel EAM, Korjoukov I (2016) Hitting the right spot: a new closed-loop stimulation procedure for oscillatory phase targeting. ESRS congress, Bologna, 13–16 Sept 2016

    Google Scholar 

  • Valderrama M et al (2012) Human gamma oscillations during slow wave sleep. PLoS ONE 7(4):e33477

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Helm E, Gujar N, Nishida M, Walker MP (2011a) Sleep-dependent facilitation of episodic memory details. PLoS ONE 6(11):e27421

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Helm E et al (2011b) REM sleep depotentiates amygdala activity to previous emotional experiences. Curr Biol 21(23):2029–2032

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dongen EV et al (2012) Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci USA 109(26):10575–10580

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427(6972):352–355

    Article  PubMed  Google Scholar 

  • Wassing R et al (2016) Slow dissolving of emotional distress contributes to hyperarousal. Proc Natl Acad Sci USA 113(9):2538–2543

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood JM, Bootzin RR, Kihlstrom JF, Schacter DL (1992) Implicit and explicit memory for verbal information presented during sleep. Am J Psychol 76–81

    Google Scholar 

  • Yoo SS, Gujar N, Hu P, Jolesz FA, Walker MP (2007) The human emotional brain without sleep–a prefrontal amygdala disconnect. Curr Biol 17(20):R877–R878

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia M. Talamini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Talamini, L.M. (2017). Memory Manipulation During Sleep: Fundamental Advances and Possibilities for Application. In: Axmacher, N., Rasch, B. (eds) Cognitive Neuroscience of Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-45066-7_19

Download citation

Publish with us

Policies and ethics