Skip to main content

Cortico-Hippocampal Circuits for Memory Consolidation: The Role of the Prefrontal Cortex

  • Chapter
  • First Online:
Cognitive Neuroscience of Memory Consolidation

Abstract

Memory is made up of multiple interacting systems, intervening at different times during the lifetime of the memory, and organizing information in different ways. One system is centered on the hippocampus and it is key for episodic memory and initial memory acquisition; while another system is based in the neocortex and is involved in storage of remote memories and semantic memory. These two stores communicate during sleep and other quiet periods, when neural patterns related to previously acquired memories are replayed. This reactivation is thought to engage plasticity processes in many brain areas, therefore enabling memory consolidation. We review here some of the experimental evidence on memory replay and dynamical interactions between cortex and hippocampus during sleep, with a focus on the prefrontal cortex, one of the key cortical areas for memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amit DJ (1989) Modeling brain function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Andrillon T, Nir Y et al (2011) Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci 31(49):17821–17834

    Article  PubMed  PubMed Central  Google Scholar 

  • Battaglia FP, Sutherland GR et al (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state†transitions. Learn Mem 11(6):697–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Battaglia FP, Benchenane K et al (2011) The hippocampus: hub of brain network communication for memory. Trends Cogn Sci 15(7):310–318

    PubMed  Google Scholar 

  • Battaglia FP, Borensztajn G et al (2012) Structured cognition and neural systems: from rats to language. Neurosci Biobehav Rev 36(7):1626–1639

    Article  PubMed  Google Scholar 

  • Bayley PJ, Gold JJ et al (2005) The neuroanatomy of remote memory. Neuron 46(5):799–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Benchenane K, Peyrache A et al (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66(6):921–936

    Article  PubMed  Google Scholar 

  • Benchenane K, Tiesinga PH et al (2011) Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21:475–485

    Article  PubMed  Google Scholar 

  • Bethus I, Tse D et al (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30(5):1610–1618

    Article  PubMed  Google Scholar 

  • Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31(3):551–570

    Article  PubMed  Google Scholar 

  • Buzsaki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25(10):1073–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G, Horváth Z et al (1992) High-frequency network oscillation in the hippocampus. Science 256(5059):1025–1027

    Article  PubMed  Google Scholar 

  • Carr MF, Jadhav SP et al (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14(2):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Carr MF, Karlsson MP, Frank LM (2012) Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 23; 75(4):700–713

    Google Scholar 

  • Cheng J, Ji D (2013) Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. Elife 2:e00647

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens Z, Fabó DN et al (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132:529–535

    Article  PubMed  Google Scholar 

  • Clemens Z, Fabó DN et al (2006) Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci Lett 403:52–56

    Article  PubMed  Google Scholar 

  • Clemens Z, Mölle M et al (2007) Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130(11):2868–2878

    Article  PubMed  Google Scholar 

  • Clemens Z, Mölle M et al (2011) Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci 33(3):511–520

    Article  PubMed  Google Scholar 

  • Cowansage KK, Shuman T et al (2014) Direct reactivation of a coherent neocortical memory of context. Neuron 84(2):432–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson TJ, Kloosterman F et al (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lavilleon G, Lacroix MM et al (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci 18(4):493–495

    Article  PubMed  Google Scholar 

  • Diba K, Buzsáki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10(10):1241–1242

    Article  PubMed  PubMed Central  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126

    PubMed  Google Scholar 

  • Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469(7330):397–401

    Article  PubMed  Google Scholar 

  • Dragoi G, Tonegawa S (2013) Development of schemas revealed by prior experience and NMDA receptor knock-out. Elife 2:e01326

    Article  PubMed  PubMed Central  Google Scholar 

  • Dresler M, Genzel L et al (2010a) Off-line memory consolidation impairments in multiple sclerosis patients receiving high-dose corticosteroid treatment mirror consolidation impairments in depression. Psychoneuroendocrinology 35(8):1194–1202

    Article  PubMed  Google Scholar 

  • Dresler M, Kluge M et al (2010b) Impaired off-line memory consolidation in depression. Eur Neuropsychopharmacol 20:553–561

    Article  PubMed  Google Scholar 

  • Dresler M, Kluge M et al (2011) A double dissociation of memory impairments in major depression. J Psychiatr Res 45(12):1593–1599

    Article  PubMed  Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Ekstrom AD, Meltzer J et al (2001) NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields”. Neuron 31(4):631–638

    Article  PubMed  Google Scholar 

  • Euston DR, Tatsuno M et al (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318(5853):1147–1150

    Article  PubMed  Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440(7084):680–683

    Article  PubMed  Google Scholar 

  • Gais S, Helms K et al (2002) Increased density of sleep spindles after extensive learning of a declarative memory task. J Sleep Res 11(Suppl 1):147

    Google Scholar 

  • Gardner RJ, Kersante F et al (2014) Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia. Eur J Neurosci 39(7):1091–1106

    Article  PubMed  Google Scholar 

  • Genzel L, Robertson EM (2015) To replay, perchance to consolidate. PLoS Biol 13(10):e1002285

    Article  PubMed  PubMed Central  Google Scholar 

  • Genzel L, Dresler M et al (2009) Slow wave sleep and REM sleep awakenings do not affect sleep dependent memory consolidation. Sleep 32(3):302–310

    PubMed  PubMed Central  Google Scholar 

  • Genzel L, Ali E et al (2011) Sleep-dependent memory consolidation of a new task is inhibited in psychiatric patients. J Psychiatr Res 45(4):555–560

    Article  PubMed  Google Scholar 

  • Genzel L, Kiefer T et al (2012) Sex and modulatory menstrual cycle effects on sleep related memory consolidation. Psychoneuroendocrinology 37(7):987–989

    Article  PubMed  Google Scholar 

  • Genzel L, Kroes MCW et al (2014) Light sleep vs. slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci 37(1):10–19

    Article  PubMed  Google Scholar 

  • Genzel L, Dresler M et al (2015a) Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry 77(2):177–186

    Article  PubMed  Google Scholar 

  • Genzel L, Spoormaker VI et al (2015b) The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem 122:110–121

    Article  PubMed  Google Scholar 

  • Ghosh VE, Gilboa A (2014) What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia 53:104–114

    Article  PubMed  Google Scholar 

  • Girardeau G, Benchenane K et al (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12(10):1222–1223

    Article  PubMed  Google Scholar 

  • Godsil BP, Kiss JP et al (2013) The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23(10):1165–1181

    Article  PubMed  Google Scholar 

  • Gupta AS, van der Meer MAA et al. (2012) Segmentation of spatial experience by hippocampal theta sequences. Nat Neurosci 15(7):1032–1039

    Google Scholar 

  • Hahn TTG, Sakmann B et al (2006) Phase-locking of hippocampal interneurons’ membrane potential to neocortical up-down states. Nat Neurosci 9(11):1359–1361

    Article  PubMed  Google Scholar 

  • Herry C, Johansen JP (2014) Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci 17(12):1644–1654

    Article  PubMed  Google Scholar 

  • Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297(5589):2070–2073

    Article  PubMed  Google Scholar 

  • Isomura Y, Sirota A et al (2006) Integration and segregation of activity in Entorhinal-Hippocampal subregions by neocortical slow oscillations. Neuron 52(5):871–882

    Article  PubMed  Google Scholar 

  • Ito HT, Zhang S-J et al (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522(7554):50–55

    Article  PubMed  Google Scholar 

  • Jadhav SP, Kemere C et al. (2012) “Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory.” Science 336(6087):1454–1458

    Google Scholar 

  • Jadhav SP, Rothschild G et al (2016) Coordinated excitation and inhibition of prefrontal ensembles during awake hippocampal sharp-wave ripple events. Neuron 90(1):113–127

    Article  PubMed  Google Scholar 

  • Johnson A, Redish AD (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 27(45):12176–12189

    Article  PubMed  Google Scholar 

  • Kao CY, Stalla G et al (2015) Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur J Neurosci 41(9):1139–1148

    Article  PubMed  Google Scholar 

  • Kaplan R, Adhikari MH et al (2016) Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr Biol 26(5):686–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Kentros C, Hargreaves E et al (1998) Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280(5372):2121–2126

    Article  PubMed  Google Scholar 

  • Kudrimoti HS, Barnes CA et al (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19(10):4090–4101

    PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36(6):1183–1194

    Article  PubMed  Google Scholar 

  • Lesburgueres E, Gobbo OL et al (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331(6019):924–928

    Article  PubMed  Google Scholar 

  • Lewis PA, Durrant SJ (2011) Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci 15(8):343–351

    Article  PubMed  Google Scholar 

  • Logothetis NK, Eschenko O et al (2012) Hippocampal-cortical interaction during periods of subcortical silence. Nature 491(7425):547–553

    Article  PubMed  Google Scholar 

  • Luczak A, Barthó P et al (2007) Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A 104(1):347–352

    Article  PubMed  Google Scholar 

  • Maingret N, Girardeau G et al (2016) “Hippocampo-cortical coupling mediates memory consolidation during sleep”. Nat Neurosci (in press)

    Google Scholar 

  • Manoach DS, Cain MS et al (2004) A failure of sleep-dependent procedural learning in chronic, medicated schizophrenia. Biol Psychiatry 56:951–956

    Article  PubMed  Google Scholar 

  • Manoach DS, Thakkar KN et al (2010) Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages. J Psychiatr Res 44(2):112–120

    Article  PubMed  Google Scholar 

  • Marr D (1970) A theory for cerebral neocortex. Proc Roy Soc Lond Ser B Biol Sci 176:161–234

    Article  Google Scholar 

  • Marr D (1971) A theory for archicortex. Philos Trans Roy Soc Lond Ser B Biol Sci 262:23–81

    Article  Google Scholar 

  • McClelland JL, McNaughton BL et al (1995) Why there are complementary learning systems in the hippocampus and neocortex: Insights form the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419–457

    Article  PubMed  Google Scholar 

  • McNamara CG, Tejero-Cantero A et al (2014) Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 17(12):1658–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Mölle M, Eschenko O et al (2009) The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 29(5):1071–1081

    Article  PubMed  Google Scholar 

  • Mongillo G, Barak O et al (2008) Synaptic theory of working memory. Science 319(5869):1543–1546

    Article  PubMed  Google Scholar 

  • Moscovitch M, Cabeza R et al (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol 67:105–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuis ILC, Takashima A (2011) The role of the ventromedial prefrontal cortex in memory consolidation. Behav Brain Res 218(2):325–334

    Article  PubMed  Google Scholar 

  • Nir Y, Staba Richard J et al (2011) Regional slow waves and spindles in human sleep. Neuron 70(1):153–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Novitskaya Y, Sara SJ et al (2016) Ripple-triggered stimulation of the locus coeruleus during post-learning sleep disrupts ripple/spindle coupling and impairs memory consolidation. Learn Mem 23(5):238–248

    Article  PubMed  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51(1):78–109

    Article  PubMed  Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3):317–330

    Article  PubMed  Google Scholar 

  • Peyrache A, Khamassi M et al (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12(7):919–926

    Article  PubMed  Google Scholar 

  • Peyrache A, Battaglia FP et al (2011) Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc Natl Acad Sci 108(41):17207–17212

    Article  PubMed  PubMed Central  Google Scholar 

  • Peyrache A, Lacroix MM et al (2015) Internally organized mechanisms of the head direction sense. Nat Neurosci 18(4):569–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497(7447):74–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips K-G, Bartsch U et al (2012) Decoupling of sleep-dependent cortical and hippocampal interactions in a neurodevelopmental model of schizophrenia. Neuron 76(3):526–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci 30(3):101–110

    Article  PubMed  Google Scholar 

  • Polta SA, Fenzl T et al (2013) Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder. Front Behav Neurosci 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23(17):R764–773

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajasethupathy P, Sankaran S et al (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanathan DS, Gulati T et al (2015) Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLoS Biol 13(9):e1002263

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Villegas JF, Logothetis NK et al (2015) Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events. Proc Natl Acad Sci U S A 112(46):E6379–6387

    Article  PubMed  PubMed Central  Google Scholar 

  • Redish AD (2016) Vicarious trial and error. Nat Rev Neurosci 17(3):147–159

    Article  PubMed  Google Scholar 

  • Reichinnek S, Kuensting T et al (2010) Field potential signature of distinct multicellular activity patterns in the mouse hippocampus. J Neurosci 30(46):15441–15449

    Article  PubMed  Google Scholar 

  • Sadowski JH, Jones MW et al (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep 14(8):1916–1929

    Article  PubMed  PubMed Central  Google Scholar 

  • Schacter DL, Addis DR et al (2012) The future of memory: remembering, imagining, and the brain. Neuron 76(4):677–694

    Article  PubMed  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21(5):1123–1128

    Article  PubMed  Google Scholar 

  • Siapas AG, Lubenov EV et al (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46(1):141–151

    Article  PubMed  Google Scholar 

  • Silva D, Feng T et al (2015) Trajectory events across hippocampal place cells require previous experience. Nat Neurosci 18(12):1772–1779

    Article  PubMed  Google Scholar 

  • Sirota A, Csicsvari J et al (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci 100(4):2065–2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirota A, Montgomery S et al (2008) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60(4):683–697

    Article  PubMed  PubMed Central  Google Scholar 

  • Skaggs WE, McNaughton BL et al (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2):149–172

    Article  PubMed  Google Scholar 

  • Squire LR, Genzel L et al (2015) Memory consolidation. Cold Spring Harb Perspect Biol 7(8):a021766

    Article  PubMed  Google Scholar 

  • Staresina B, Bergmann TO et al (2015) “Hierachical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep.” Nat Neurosci

    Google Scholar 

  • Taxidis J, Anastassiou CA et al (2015) Local field potentials encode place cell ensemble activation during hippocampal sharp wave ripples. Neuron 87(3):590–604

    Article  PubMed  Google Scholar 

  • Thierry AM, Gioanni Y et al (2000) Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10(4):411–419

    Article  PubMed  Google Scholar 

  • Tierney PL, Dégenètais E et al (2004) Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur J Neurosci 20(2):514–524

    Article  PubMed  Google Scholar 

  • Tse D, Langston RF et al (2007) Schemas and memory consolidation. Science 316(5821):76–82

    Article  PubMed  Google Scholar 

  • Tse D, Takeuchi T et al (2011) Schema-dependent gene activation and memory encoding in neocortex. Science 333(6044):891–895

    Article  PubMed  Google Scholar 

  • van Buuren M, Kroes MC et al (2014) Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans. J Neurosci 34(50):16662–16670

    Article  PubMed  Google Scholar 

  • van Kesteren MT, Fernandez G et al (2010a) Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A 107(16):7550–7555

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kesteren MT, Rijpkema M et al (2010b) Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J Neurosci 30(47):15888–15894

    Article  PubMed  Google Scholar 

  • van Kesteren MTR, Ruiter DJ et al (2012) How schema and novelty augment memory formation. Trends Neurosci 35(4):211–219

    Article  PubMed  Google Scholar 

  • Varela C, Kumar S et al (2013) “Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens.” Brain Struct Funct 1–19

    Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142(1):1–20

    Article  PubMed  Google Scholar 

  • Villette V, Malvache A et al (2015) Internally recurring hippocampal sequences as a population template of spatiotemporal information. Neuron 88(2):357–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner IC, van Buuren M et al (2015) “Schematic memory components converge within angular gyrus during retrieval.” Elife 4:e09668

    Google Scholar 

  • Wamsley EJ, Tucker MA et al (2012) Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry 71(2):154–161

    Article  PubMed  Google Scholar 

  • Wang SH, Tse D et al (2012) Anterior cingulate cortex in schema assimilation and expression. Learn Mem 19(8):315–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang DV, Yau HJ et al (2015) Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation. Nat Neurosci 18(5):728–735

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiltgen BJ, Zhou M et al (2010) The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr Biol 20(15):1336–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Winocur G, Moscovitch M et al (2013) Factors affecting graded and ungraded memory loss following hippocampal lesions. Neurobiol Learn Mem 106:351–364

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Genzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genzel, L., Battaglia, F.P. (2017). Cortico-Hippocampal Circuits for Memory Consolidation: The Role of the Prefrontal Cortex. In: Axmacher, N., Rasch, B. (eds) Cognitive Neuroscience of Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-45066-7_16

Download citation

Publish with us

Policies and ethics