Skip to main content

Control of \(\Lambda \)-adic Mordell–Weil Groups

  • Conference paper
  • First Online:
Elliptic Curves, Modular Forms and Iwasawa Theory (JHC70 2015)

Abstract

The (pro) \(\Lambda \)-MW group is a projective limit of Mordell–Weil groups over a number field k (made out of modular Jacobians) with an action of the Iwasawa algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the \(\Lambda \)-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [21].

To John Coates

The author is partially supported by the NSF grants: DMS 0753991 and DMS 1464106.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Books

  1. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Springer, New York (1990)

    Book  MATH  Google Scholar 

  2. Faltings, G., Wüstholtz, G., et al.: Rational Points, Aspects of Mathematics E6. Friedr. Vieweg & Sohn, Braunschweig (1992)

    Google Scholar 

  3. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics 52. Springer, New York (1977)

    Google Scholar 

  4. Hida, H.: Elliptic Curves and Arithmetic Invariants. Springer Monographs in Mathematics, Springer, New York (2013)

    Book  MATH  Google Scholar 

  5. Hida, H.: Geometric Modular Forms and Elliptic Curves, 2nd edn. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  6. Hida, H.: Hilbert modular forms and Iwasawa theory. Oxford University Press (2006)

    Google Scholar 

  7. Hida, H.: Modular Forms and Galois Cohomology, Cambridge Studies in Advanced Mathematics 69. Cambridge University Press, Cambridge, England (2000)

    Book  Google Scholar 

  8. Katz, N.M., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud. 108, Princeton University Press, Princeton, NJ (1985)

    Google Scholar 

  9. Milne, J.S.: Arithmetic Duality Theorems, 2nd edn. BookSurge, LLC (2006)

    MATH  Google Scholar 

  10. Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton, NJ (1980)

    MATH  Google Scholar 

  11. Miyake, T.: Modular Forms. Springer, New York-Tokyo (1989)

    Book  MATH  Google Scholar 

  12. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Springer Springer Grundlehren der mathematischen Wissenschaften, 323 (2000)

    Google Scholar 

  13. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton, NJ, and Iwanami Shoten, Tokyo (1971)

    Google Scholar 

Articles

  1. Fischman, A.: On the image of \(\Lambda \)-adic Galois representations. Ann. Inst. Fourier (Grenoble) 52, 351–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ghate, E., Kumar, N.: Control theorems for ordinary \(2\)-adic families of modular forms, Automorphic representations and L-functions, 231–261, Tata Inst. Fundam. Res. Stud. Math., 22, Tata Inst. Fund. Res., Mumbai (2013)

    Google Scholar 

  3. Hida, H.: Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Ec. Norm. Sup. 4th series 19, 231–273 (1986)

    Google Scholar 

  4. Hida, H.: Galois representations into \(GL_2({\mathbb{Z}}_{p}[[X]]\) attached to ordinary cusp forms. Inventiones Math. 85, 545–613 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hida, H.: \(\Lambda \)-adic \(p\)-divisible groups, I, II. Two lecture notes of a series of talks at the Centre de Recherches Mathématiques, Montréal (2005). http://www.math.ucla.edu/hida/CRMpaper.pdf

  6. Hida, H.: Local indecomposability of Tate modules of non CM abelian varieties with real multiplication. J. Amer. Math. Soc. 26, 853–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hida, H.: \(\Lambda \)-adic Barsotti-Tate groups. Pacific J. Math. 268, 283–312 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hida, H.: Limit modular Mordell-Weil groups and their \(p\)-adic closure, Documenta Math., Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday, pp. 221–264 (2015)

    Google Scholar 

  9. Hida, H.: Analytic variation of Tate-Shafarevich groups (preprint, 2016), 51 p. http://www.math.ucla.edu/hida/LTS.pdf

  10. Mattuck, A.: Abelian varieties over \(p\)-adic ground fields. Ann. Math. 62(2), 92–119 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mazur, B., Wiles, A.: Class fields of abelian extensions of \({\mathbf{Q}}\). Inventiones Math. 76, 179–330 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mazur, B., Wiles, A.: On \(p\)-adic analytic families of Galois representations. Compositio Math. 59, 231–264 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Mumford, D.: An analytic construction of degenerating abelian varieties over complete rings. Compositio Math. 24, 239–272 (1972)

    MathSciNet  MATH  Google Scholar 

  14. Nekovár, J.: Selmer complexes. Astérisque 310, viii+559 (2006)

    Google Scholar 

  15. Ohta, M.: Ordinary \(p\)-adic étale cohomology groups attached to towers of elliptic modular curves. Compositio Math. 115, 241–301 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schneider, P.: Iwasawa L-functions of varieties over algebraic number fields. A first approach. Invent. Math. 71, 251–293 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schneider, P.: Arithmetic of formal groups and applications. I. Universal norm subgroups. Invent. Math. 87, 587–602 (1987)

    Article  MATH  Google Scholar 

  18. Shimura, G.: On the factors of the jacobian variety of a modular function field. J. Math. Soc. Japan 25, 523–544 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tate, J.: \(p\)-divisible groups. In: Proceedings of Conference on local filds, Driebergen 1966, Springer, pp. 158–183 (1967)

    Google Scholar 

  20. Zhao, B.: Local indecomposability of Hilbert modular Galois representations. Annales de l’institut Fourier 64, 1521–1560 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruzo Hida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hida, H. (2016). Control of \(\Lambda \)-adic Mordell–Weil Groups. In: Loeffler, D., Zerbes, S. (eds) Elliptic Curves, Modular Forms and Iwasawa Theory. JHC70 2015. Springer Proceedings in Mathematics & Statistics, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-45032-2_7

Download citation

Publish with us

Policies and ethics