Skip to main content

Vanishing of Some Galois Cohomology Groups for Elliptic Curves

  • Conference paper
  • First Online:
Elliptic Curves, Modular Forms and Iwasawa Theory (JHC70 2015)

Abstract

Let \(E/\mathbb {Q}\) be an elliptic curve and p be a prime number, and let G be the Galois group of the extension of \(\mathbb {Q}\) obtained by adjoining the coordinates of the p-torsion points on E. We determine all cases when the Galois cohomology group \(H^1\bigl ( G, E[p]\bigr )\) does not vanish, and investigate the analogous question for \(E[p^i]\) when \(i>1\). We include an application to the verification of certain cases of the Birch and Swinnerton-Dyer conjecture, and another application to the Grunwald–Wang problem for elliptic curves.

Tyler Lawson’s work is partially supported by NSF DMS-1206008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birch, B.J., Kuyk, W. (eds.): Modular functions of one variable. IV. In: Lecture Notes in Mathematics, vol. 476. Springer, Berlin, New York (1975)

    Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997). http://dx.doi.org/10.1006/jsco.1996.0125. Computational algebra and number theory (London, 1993)

  3. Cha, B.: Vanishing of some cohomology groups and bounds for the Shafarevich-Tate groups of elliptic curves. J. Number Theory 111(1), 154–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Çiperiani, M., Stix, J.: Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels. To appear in Journal für die Reine und Angewandte Mathematik

    Google Scholar 

  5. Coates, J.: An application of the division theory of elliptic functions to diophantine approximation. Invent. Math. 11, 167–182 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cremona, J.E.: Algorithms for Modular Elliptic Curves, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  7. Creutz, B.: On the local-glocal principle for divisibility in the cohomology of elliptic curves (2013). http://arxiv.org/abs/1305.5881

  8. Creutz, B., Miller, R.L.: Second isogeny descents and the Birch and Swinnerton-Dyer conjectural formula. J. Algebra 372, 673–701 (2012). http://dx.doi.org/10.1016/j.jalgebra.2012.09.029

    Google Scholar 

  9. Dvornicich, R., Zannier, U.: Local-global divisibility of rational points in some commutative algebraic groups. Bull. Soc. Math. France 129(3), 317–338 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Dvornicich, R., Zannier, U.: An analogue for elliptic curves of the Grunwald–Wang example. C. R. Math. Acad. Sci. Paris 338(1), 47–50 (2004). http://dx.doi.org/10.1016/j.crma.2003.10.034

    Google Scholar 

  11. Greenberg, R.: The image of Galois representations attached to elliptic curves with an isogeny. Amer. J. Math. 134(5), 1167–1196 (2012). http://dx.doi.org/10.1353/ajm.2012.0040

    Google Scholar 

  12. Greenberg, R., Rubin, K., Silverberg, A., Stoll, M.: On elliptic curves with an isogeny of degree 7. Amer. J. Math. 136(1), 77–109 (2014). http://dx.doi.org/10.1353/ajm.2014.0005

    Google Scholar 

  13. Grigorov, G., Jorza, A., Patrikis, S., Stein, W., Tarniţǎ, C.: Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves. Math. Comp. 78(268), 2397–2425 (2009). http://dx.doi.org/10.1090/S0025-5718-09-02253-4

    Google Scholar 

  14. Gross, B.H.: Kolyvagin’s work on modular elliptic curves. In: \(L\)-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, pp. 235–256. Cambridge University Press, Cambridge (1991). http://dx.doi.org/10.1017/CBO9780511526053.009

  15. Matar, A.: For an elliptic curve \(E/{\mathbb{Q}}\) can the cohomology group \(H^1\bigl (\text{Gal}({\mathbb{Q}}(E[p])/{\mathbb{Q}}),E[p]\bigr )\) be nontrivial? (2014). http://mathoverflow.net/questions/186807

  16. Mazur, B.: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129–162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, R.L.: Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one. LMS J. Comput. Math. 14, 327–350 (2011). http://dx.doi.org/10.1112/S1461157011000180

    Google Scholar 

  18. Miller, R.L., Stoll, M.: Explicit isogeny descent on elliptic curves. Math. Comp. 82(281), 513–529 (2013). http://dx.doi.org/10.1090/S0025-5718-2012-02619-6

    Google Scholar 

  19. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields (Grundlehren der Mathematischen Wissenschaften), vol. 323. Springer (2000)

    Google Scholar 

  20. Paladino, L., Ranieri, G., Viada, E.: On the minimal set for counterexamples to the local-global principle. J. Algebra 415, 290–304 (2014). http://dx.doi.org/10.1016/j.jalgebra.2014.06.004

    Google Scholar 

  21. Serre, J.P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  22. Serre, J.P.: Cohomologie Galoisienne. In: Lecture Notes in Mathematics, vol. 5. Springer, Berlin-New York (1973)

    Google Scholar 

  23. Stein, W.A., et al.: Sage Mathematics Software (Version 6.4). The Sage Development Team (2014). http://www.sagemath.org

  24. Wuthrich, C.: prove_BSD for elliptic curve uses an incorrect lemma (2015). Bug report and fixing patch for SageMath. http://trac.sagemath.org/ticket/17869

Download references

Acknowledgements

It is our pleasure to thank Jean Gillibert and John Coates for interesting comments and suggestions. We are also grateful to Brendan Creutz for pointing us to [7].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wuthrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lawson, T., Wuthrich, C. (2016). Vanishing of Some Galois Cohomology Groups for Elliptic Curves. In: Loeffler, D., Zerbes, S. (eds) Elliptic Curves, Modular Forms and Iwasawa Theory. JHC70 2015. Springer Proceedings in Mathematics & Statistics, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-45032-2_11

Download citation

Publish with us

Policies and ethics