Skip to main content

Regression on Lie Groups and Its Application to Affine Motion Tracking

  • Chapter
  • First Online:

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

In this chapter, we present how to learn regression models on Lie groups and apply our formulation to visual object tracking tasks. Many transformations used in computer vision, for example orthogonal group and rotations, have matrix Lie group structure. Unlike conventional methods that proceed by directly linearizing these transformations, thus, making an implicit Euclidean space assumption, we formulate a regression model on the corresponding Lie algebra that minimizes a first order approximation to the geodesic error. We demonstrate our method on affine motions , however, it generalizes to any matrix Lie group transformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Albrecht, M. Luthi, T. Vetter, A statistical deformation prior for non-rigid image and shape registration, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008

    Google Scholar 

  2. S. Avidan. Ensemble tracking, in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005

    Google Scholar 

  3. S. Baker, I. Matthews, Equivalence and efficiency of image alignment algorithms. Proc. IEEE Conf. Comput. Vis. Pattern Recogn. Kauai, HI, 1, 1090–1097 (2001)

    Google Scholar 

  4. S. Baker, I. Matthews, Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)

    Article  Google Scholar 

  5. E. Bayro-Corrochano, J. Ortegon-Aguilar. Lie algebra template tracking, in Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 56–59, 2004

    Google Scholar 

  6. Y. Boykov, D. Huttenlocher, Adaptive Bayesian recognition in tracking rigid objects (In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head, SC, II, 2000), pp. 697–704

    Google Scholar 

  7. G. Chirikjian, Stochastic Models, Information Theory, and Lie Groups (Birkhauser, Boston, 2011)

    Google Scholar 

  8. T. Cootes, G. Edwards, C. Taylor, Active appearance models (In Proc. European Conf. on Computer Vision, Freiburg, Germany, 1998), pp. 484–498

    Google Scholar 

  9. T. Drummond, R. Cipolla, Application of Lie algebras to visual servoing. Int. J. Comp. Vis. 37, 21–41 (2000)

    Article  MATH  Google Scholar 

  10. S. Hare, A. Saffari, P.H.S. Torr, Struck: Structured output tracking with kernels, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2011

    Google Scholar 

  11. T. Hastie, R. Tibshirani, J. Freidman. The Elements of Statistical Learning. (Springer, Berlin, 2001)

    Google Scholar 

  12. W. He, T. Yamashita, H. Lu, S. Lao, SURF tracking, in Proceedings of the International Conference on Computer Vision (ICCV), 2009

    Google Scholar 

  13. M. Isard, I. Blake, Condensation-conditional density propagation for visual tracking. Int. J. Comp. Vis. 29, 5–28 (1998)

    Article  Google Scholar 

  14. F. Jurie, M. Dhome, Hyperplane approximation for template matching. IEEE Trans. Pattern Anal. Mach. Intell. 24, 996–1000 (2002)

    Article  Google Scholar 

  15. J. Kwon, K. M. Lee, F. Park. Visual tracking via geometric particle filtering on the affine group with optimal importance functions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009

    Google Scholar 

  16. D. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. R. Mahony, P.A. Absil, R. Sepulchre. Optimization algorithms on matrix manifolds. (Princeton University Press, Princeton, 2009)

    Google Scholar 

  18. I. Matthews, S. Baker, Active appearance models revisited. Int. J. Comp. Vis. 60, 135–164 (2004)

    Article  Google Scholar 

  19. M. Ozuysal, P. Fua, V. Lepetit. Fast keypoint recognition in ten lines of code, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007

    Google Scholar 

  20. F. Porikli, O. Tuzel, P. Meer. Covariance tracking using model update based on Lie algebra, in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2006

    Google Scholar 

  21. W. Rossmann. Lie Groups: An Introduction Through Linear Groups. (Oxford Press, Oxford, 2002)

    Google Scholar 

  22. S.S. Sastry, J. Kosecka, Y. Ma, S. Sastry, An invitation to 3-d vision: from images to geometric models. (Springer, Berlin, 2003)

    Google Scholar 

  23. A.W.M. Smeulders, D.M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, M. Shah. Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)

    Google Scholar 

  24. O. Tuzel, F. Porikli, P. Meer. Learning on Lie groups for invariant detection and tracking, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008

    Google Scholar 

  25. T. Vetter, T. Poggio, Linear object classes and image synthesis from a single example image. IEEE Trans. Pattern Anal. Machine Intell. 19, 733–742 (1997)

    Article  Google Scholar 

  26. D. Wagner, T. Langlotz, D. Schmalstieg. Robust and unobtrusive marker tracking on mobile phones, in Proceedings of the ACM International Symposium on Mixed and Augmented Reality (ISMAR), 2008

    Google Scholar 

  27. N. Wang, S. Li, A. Gupta, and D. Yeung. Transferring rich feature hierarchies for robust visual tracking. CoRR, 2015

    Google Scholar 

  28. O. Williams, A. Blake, R. Cipolla, Sparse Bayesian learning for efficient visual tracking. IEEE Trans. Pattern Anal. Machine Intell. 27, 1292–1304 (2005)

    Article  Google Scholar 

  29. Y. Wu, J. Lim, M.H. Yang. Online object tracking: a benchmark, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

    Google Scholar 

  30. G. Zhu, F. Porikli, H. Li. Lie-Struck: affine tracking on Lie groups using structured SVM, in Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Porikli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Porikli, F. (2016). Regression on Lie Groups and Its Application to Affine Motion Tracking. In: Minh, H., Murino, V. (eds) Algorithmic Advances in Riemannian Geometry and Applications. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-45026-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45026-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45025-4

  • Online ISBN: 978-3-319-45026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics