Skip to main content

Abstract

Photodynamic therapy (PDT) was discovered over 100 years ago when it was observed that certain dyes could kill microorganisms when exposed to light in the presence of oxygen. Since those early days, PDT has mainly been developed as a cancer therapy with regulatory approvals and clinical trials steadily accumulating for different types of cancer and different photosensitizer structures. A very important milestone for PDT was the introduction of 5-aminolevulinic acid (ALA), which functions as a prodrug to induce endogenous porphyrin biosynthesis that acts as an endogenous photosensitizer produced by our cells. PDT with ALA and its derivatives have become mainstays of the clinical dermatologist’s practice covering everything from skin cancer, premalignant lesions, acne, and skin rejuvenation. Another milestone in PDT development was the realization that PDT may also be used as an effective antimicrobial modality and a potential treatment for localized infections. To some extent, this means that PDT has gone full circle and returned to its roots from when it was first discovered in 1900. In this chapter we discuss, in a contextualized fashion, what are the expected characteristics of an ideal photosensitizer and which are the main molecular frameworks used for development of synthetic, natural, and nanostructured photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008;7(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  3. Verteporfin Roundtable P. Guidelines for using verteporfin (Visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: update. Retina. 2005;25(2):119–34.

    Article  Google Scholar 

  4. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santin GC, Oliveira DS, Galo R, Borsatto MC, Corona SA. Antimicrobial photodynamic therapy and dental plaque: a systematic review of the literature. ScientificWorldJournal. 2014;2014:824538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang YY, Tanaka M, Vecchio D, Garcia-Diaz M, Chang J, Morimoto Y, et al. Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Rev Clin Immunol. 2012;8(5):479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G. Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B. 1996;32(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  9. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kostovic K, Pastar Z, Ceovic R, Mokos ZB, Buzina DS, Stanimirovic A. Photodynamic therapy in dermatology: current treatments and implications. Coll Antropol. 2012;36(4):1477–81.

    PubMed  Google Scholar 

  11. Wang H, Wang X, Zhang S, Wang P, Zhang K, Liu Q. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species. Int J Nanomedicine. 2014;9:3077–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kessel D. Photosensitization with derivatives of haematoporphyrin. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49(6):901–7.

    Article  CAS  PubMed  Google Scholar 

  13. Senge MO, Brandt JC. Temoporfin (Foscan(R), 5,10,15,20-tetra(m-hydroxyphenyl)chlorin) – a second-generation photosensitizer. Photochem Photobiol. 2011;87(6):1240–96.

    Article  CAS  PubMed  Google Scholar 

  14. Chan WM, Lim TH, Pece A, Silva R, Yoshimura N. Verteporfin PDT for non-standard indications – a review of current literature. Graefes Arch Clin Exp Ophthalmol. 2010;248(5):613–26.

    Article  CAS  PubMed  Google Scholar 

  15. Moore CM, Azzouzi AR, Barret E, Villers A, Muir GH, Barber NJ, et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int. 2015;116(6):888–96.

    Google Scholar 

  16. Anderson CY, Freye K, Tubesing KA, Li YS, Kenney ME, Mukhtar H, et al. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF-1 tumors in C3H mice. Photochem Photobiol. 1998;67(3):332–6.

    Article  CAS  PubMed  Google Scholar 

  17. Wainwright M, Crossley KB. Methylene blue – a therapeutic dye for all seasons? J Chemother. 2002;14(5):431–43.

    Article  CAS  PubMed  Google Scholar 

  18. Cincotta L, Foley JW, MacEachern T, Lampros E, Cincotta AH. Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas. Cancer Res. 1994;54(5):1249–58.

    CAS  PubMed  Google Scholar 

  19. Ali MF. Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal. Lasers Med Sci. 2011;26(2):267–75.

    Article  PubMed  Google Scholar 

  20. Kawamoto KS,N, Shimada K, Ito K, Hirano Y, Murai S. Antibacterial effect of yellow He-Ne laser irradiation with crystal violet solution on porphyromonas gingivalis: an evaluation using experimental rat model involving subcutaneous abscess. Lasers Med Sci. 2000;15(4):5.

    Article  Google Scholar 

  21. Prates RA, Yamada Jr AM, Suzuki LC, Eiko Hashimoto MC, Cai S, Gouw-Soares S, et al. Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B Biol. 2007;86(1):70–6.

    Article  CAS  Google Scholar 

  22. Shafeekh KM, Soumya MS, Rahim MA, Abraham A, Das S. Synthesis and characterization of near-infrared absorbing water soluble squaraines and study of their photodynamic effects in DLA live cells. Photochem Photobiol. 2014;90(3):585–95.

    Article  CAS  PubMed  Google Scholar 

  23. Rice DR, Gan H, Smith BD. Bacterial imaging and photodynamic inactivation using zinc(ii)-dipicolylamine BODIPY conjugates. Photochem Photobiol Sci. 2015;14(7):1271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cieplik F, Spath A, Regensburger J, Gollmer A, Tabenski L, Hiller KA, et al. Photodynamic biofilm inactivation by SAPYR – an exclusive singlet oxygen photosensitizer. Free Radic Biol Med. 2013;65:477–87.

    Article  CAS  PubMed  Google Scholar 

  25. Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The multifaceted photocytotoxic profile of hypericin. Mol Pharm. 2009;6(6):1775–89.

    Article  CAS  PubMed  Google Scholar 

  26. Maisch T, Eichner A, Spath A, Gollmer A, Konig B, Regensburger J, et al. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS ONE. 2014;9(12):e111792.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tortik N, Steinbacher P, Maisch T, Spaeth A, Plaetzer K. A comparative study on the antibacterial photodynamic efficiency of a curcumin derivative and a formulation on a porcine skin model. Photochem Photobiol Sci. 2016;15(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  28. Lei W, Zhou Q, Jiang G, Zhang B, Wang X. Photodynamic inactivation of Escherichia coli by Ru(II) complexes. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol. 2011;10(6):887–90.

    CAS  Google Scholar 

  29. El-Hussein A, Mfouo-Tynga I, Abdel-Harith M, Abrahamse H. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J Photochem Photobiol B. 2015;153:67–75.

    Article  CAS  PubMed  Google Scholar 

  30. Chu CK, Tu YC, Hsiao JH, Yu JH, Yu CK, Chen SY, et al. Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology. 2016;27(11):115102.

    Article  PubMed  Google Scholar 

  31. Meziani MJ, Dong X, Zhu L, Jones LP, LeCroy GE, Yang F, et al. Visible-light-activated bactericidal functions of carbon “Quantum” dots. ACS Appl Mater Interfaces. 2016;8(17):10761–6.

    Google Scholar 

  32. Li S, Chang K, Sun K, Tang Y, Cui N, Wang Y, et al. Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy. ACS Appl Mater Interfaces. 2016;8(6):3624–34.

    Article  CAS  PubMed  Google Scholar 

  33. Jin S, Zhou L, Gu Z, Tian G, Yan L, Ren W, et al. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Nanoscale. 2013;5(23):11910–8.

    Article  CAS  PubMed  Google Scholar 

  34. Spyropoulos-Antonakakis N, Sarantopoulou E, Trohopoulos PN, Stefi AL, Kollia Z, Gavriil VE, et al. Selective aggregation of PAMAM dendrimer nanocarriers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: a photodynamic therapy for atherosclerosis. Nanoscale Res Lett. 2015;10:210.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bastien E, Schneider R, Hackbarth S, Dumas D, Jasniewski J, Roder B, et al. PAMAM G4.5-chlorin e6 dendrimeric nanoparticles for enhanced photodynamic effects. Photochem Photobiol Sci. 2015;14(12):2203–12.

    Article  CAS  PubMed  Google Scholar 

  36. Senge MO. mTHPC – a drug on its way from second to third generation photosensitizer? Photodiagnosis Photodyn Ther. 2012;9(2):170–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tu J, Wang T, Shi W, Wu G, Tian X, Wang Y, et al. Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape. Biomaterials. 2012;33(31):7903–14.

    Article  CAS  PubMed  Google Scholar 

  38. Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B. 1994;23(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  39. Goff BA, Hermanto U, Rumbaugh J, Blake J, Bamberg M, Hasan T. Photoimmunotherapy and biodistribution with an OC125-chlorin immunoconjugate in an in vivo murine ovarian cancer model. Br J Cancer. 1994;70(3):474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kascakova S, Hofland LJ, De Bruijn HS, Ye Y, Achilefu S, van der Wansem K, et al. Somatostatin analogues for receptor targeted photodynamic therapy. PLoS ONE. 2014;9(8):e104448.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Demidova TN, Hamblin MR. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother. 2005;49(6):2329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Demidova TN, Hamblin MR. Macrophage-targeted photodynamic therapy. Int J Immunopathol Pharmacol. 2004;17(2):117–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. You H, Yoon HE, Jeong PH, Ko H, Yoon JH, Kim YC. Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy. Bioorg Med Chem. 2015;23(7):1453–62.

    Article  CAS  PubMed  Google Scholar 

  44. El-Akra N, Noirot A, Faye JC, Souchard JP. Synthesis of estradiol-pheophorbide a conjugates: evidence of nuclear targeting, DNA damage and improved photodynamic activity in human breast cancer and vascular endothelial cells. Photochem Photobiol Sci. 2006;5(11):996–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ballut S, Makky A, Chauvin B, Michel JP, Kasselouri A, Maillard P, et al. Tumor targeting in photodynamic therapy. From glycoconjugated photosensitizers to glycodendrimeric one. Concept, design and properties. Org Biomol Chem. 2012;10(23):4485–95.

    Article  CAS  PubMed  Google Scholar 

  46. Zou Q, Zhao H, Zhao Y, Fang Y, Chen D, Ren J, et al. Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble bis(arylidene)cycloalkanone photosensitizers. J Med Chem. 2015;58(20):7949–58.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang X, Ai F, Sun T, Wang F, Zhu G. Multimodal upconversion nanoplatform with a mitochondria-targeted property for improved photodynamic therapy of cancer cells. Inorg Chem. 2016;55(8):3872–80.

    Article  CAS  PubMed  Google Scholar 

  48. Kachynski AV, Pliss A, Kuzmin AN, Ohulchanskyy XTY, Baev A, Qu J, et al. Photodynamic therapy by in situ nonlinear photon conversion. Nat Photonics. 2014;8:455–61.

    Article  CAS  Google Scholar 

  49. Gryson O. Servier medical art France: servier. 2016. Available from: http://www.servier.com/Powerpoint-image-bank.

Download references

Acknowledgments

MR Hamblin was supported by US NIH grant R01AI050875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Richard Hamblin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamblin, M.R., Sabino, C.P. (2016). Photosensitizers. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_3

Download citation

Publish with us

Policies and ethics