Skip to main content

Abstract

Microorganisms (MO) multiply rapidly and mutations that guarantee its survival forward to antimicrobials become prevalent in new populations. The inexorable rise of multidrug-resistant MO leads to an effort to search for alternative approaches that, hypothetically, MO could not easily develop resistance. Antimicrobial photodynamic therapy (PDT) is an effective alternative treatment for infected lesions in animals. The goal of the technique is to destroy a sufficient number of pathogenic MO to prevent recolonization and avoid unacceptable destruction of the host tissue. An important observation concerns the selectivity of the photosensitizer by microbial cells when compared to the host. This is because the photosensitizer (PS) uptake by host cells is slower than by MO. If the site of infection is irradiated after a short interval from the PS application (minutes), the damage to host tissue is minimized. Currently, antimicrobial PDT has proven its effectiveness against bacteria, virus, fungi, and parasites. This chapter reviews the literature regarding antimicrobial PDT especially for veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshikawa TT. Antimicrobial resistance and aging: beginning of the end of the antibiotic era? J Am Geriatr Soc. 2002;50(7 Suppl):S226–9.

    Article  PubMed  Google Scholar 

  2. Bisht R, Katiyar A, Singh R, Mittal P. Antibiotic resistance – a global issue of concern. Asian J Pharm Clin Res. 2009;2(2):34–9.

    Google Scholar 

  3. Dai T, Huang Y-Y, Hamblin MR. Photodynamic therapy for localized infections – state of the art. Photodiagnosis Photodyn Ther. 2009;6(3–4):170–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vinck E, Cagme B, Vinck H, Cambier D. Is photodynamic therapy an appropriate treatment of feline superficial squamous cell carcinomas? Two case studies in small animal practice. In: Longo L Hofstetter AG, Pascu M-L, Waidelich WRA, editors. Proceedings of SPIE. Bellingham; 2003, p. 39–45.

    Google Scholar 

  5. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55(1):145–57.

    Article  CAS  PubMed  Google Scholar 

  6. Nitzan Y, Balzam-Sudakevitz A, Ashkenazi H. Eradication of acinetobacter baumannii by photosensitized agents in vitro. J Photochem Photobiol B Biol. 1998;42(3):211–8.

    Article  CAS  Google Scholar 

  7. Wilson M, Pratten J. Lethal photosensitisation of Staphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time. Lasers Surg Med. 1995;16(3):272–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lambrechts SAG, Aalders MCG, Verbraak FD, Lagerberg JWM, Dankert JB, Schuitmaker JJ. Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin. J Photochem Photobiol B Biol. 2005;79(1):51–7.

    Article  CAS  Google Scholar 

  9. Street CN, Pedigo L, Gibbs A, Loebel NG. Antimicrobial Photodynamic Therapy for the Decolonization of Methicillin-Resistant Staphylococcus aureus from the Anterior Nares. In: Kessel DH, editor. Photodynamic therapy: Back to the Future. Seattle: Proc. SPIE 7380; 2009. p. 73803B – 73803B – 16.

    Google Scholar 

  10. Maisch T, Bosl C, Szeimies R-M, Love B, Abels C. Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo. Photochem Photobiol Sci. 2007;6(5):545–51.

    Article  CAS  PubMed  Google Scholar 

  11. Mohr H, Bachmann B, Klein-Struckmeier A, Lambrecht B. Virus inactivation of blood products by phenothiazine dyes and light. Photochem Photobiol. 1997;65(3):441–5.

    Article  CAS  PubMed  Google Scholar 

  12. Mohr H, Knüver-Hopf J, Gravemann U, Redecker-Klein A, Müller TH. West Nile virus in plasma is highly sensitive to methylene blue-light treatment. Transfusion. 2004;44(6):886–90.

    Article  CAS  PubMed  Google Scholar 

  13. Mohr H, Redecker-Klein A. Inactivation of pathogens in platelet concentrates by using a two-step procedure. Vox Sang. 2003;84(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  14. Ben-Hur E, Geacintov NE, Studamire B, Kenney ME, Horowitz B. The effect of irradiance on virus sterilization and photodynamic damage in red blood cells sensitized by phthalocyanines. Photochem Photobiol. 1995;61(2):190–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ben-Hur E, Barshtein G, Chen S, Yedgar S. Photodynamic treatment of red blood cell concentrates for virus inactivation enhances red blood cell aggregation: protection with antioxidants. Photochem Photobiol. 1997;66(4):509–12.

    Article  CAS  PubMed  Google Scholar 

  16. Smijs TGM, Bouwstra JA, Schuitmaker HJ, Talebi M, Pavel S. A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother. 2007;59(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca MB, Júnior POT, Pallota RC, Filho HF, Denardin OVP, Rapoport A, et al. Photodynamic therapy for root canals infected with Enterococcus faecalis. Photomed Laser Surg. 2008;26(3):209–13.

    Article  PubMed  Google Scholar 

  18. Foschi F, Fontana CR, Ruggiero K, Riahi R, Vera A, Doukas AG, et al. Photodynamic inactivation of Enterococcus faecalis in dental root canals in vitro. Lasers Surg Med. 2007;39(10):782–7.

    Article  PubMed  Google Scholar 

  19. Millson CE, Wilson M, MacRobert AJ, Bown SG. Ex-vivo treatment of gastric Helicobacter infection by photodynamic therapy. J Photochem Photobiol B Biol. 1996;32(1–2):59–65.

    Article  CAS  Google Scholar 

  20. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nitzan Y, Gutterman M, Malik Z, Ehrenberg B. Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem Photobiol. 1992;55(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  22. Bertoloni G, Rossi F, Valduga G, Jori G, van Lier J. Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiol Lett. 1990;59(1–2):149–55.

    Article  CAS  PubMed  Google Scholar 

  23. Wainwright M. Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents. 2003;21(6):510–20.

    Article  CAS  PubMed  Google Scholar 

  24. de Paula EC, Aranha ACC, Simões A, Bello-Silva MS, Ramalho KM, Esteves-Oliveira M, et al. Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci. 2014;29(4):1517–29.

    Google Scholar 

  25. Costa L, Faustino MAF, Neves MGPMS, Cunha A, Almeida A. Photodynamic inactivation of Mammalian viruses and bacteriophages. Viruses. 2012;4(7):1034–74.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jackson Z, Meghji S, MacRobert A, Henderson B, Wilson M. Killing of the yeast and hyphal forms of candida albicans using a light-activated antimicrobial agent. Lasers Med Sci. 1999;14(2):150–7.

    Article  CAS  PubMed  Google Scholar 

  27. Baltazar L de M, Soares BM, Carneiro HCS, Avila TV, Gouveia LF, Souza DG, et al. Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J Antimicrob Chemother. 2013;68(2):354–61.

    Article  Google Scholar 

  28. Baltazar LM, Werneck SMC, Carneiro HCS, Gouveia LF, de Paula TP, Byrro RMD, et al. Photodynamic therapy efficiently controls dermatophytosis caused by Trichophyton rubrum in a murine model. Br J Dermatol. 2015;172(3):801–4.

    Article  CAS  PubMed  Google Scholar 

  29. Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  30. de Silva O EP, Mittmann J, Ferreira VTP, Cardoso MAG, Beltrame M. Photodynamic effects of zinc phthalocyanines on intracellular amastigotes of Leishmania amazonensis and Leishmania braziliensis. Lasers Med Sci. 2015;30(1):347–54.

    Article  Google Scholar 

  31. Song D, Lindoso JAL, Oyafuso LK, Kanashiro EHY, Cardoso JL, Uchoa AF, et al. Photodynamic therapy using methylene blue to treat cutaneous leishmaniasis. Photomed Laser Surg. 2011;29(10):711–5.

    Article  CAS  PubMed  Google Scholar 

  32. Enk CD, Nasereddin A, Alper R, Dan-Goor M, Jaffe CL, Wulf HC. Cutaneous leishmaniasis responds to daylight-activated photodynamic therapy: proof of concept for a novel self-administered therapeutic modality. Br J Dermatol. 2015;172(5):1364–70.

    Article  CAS  PubMed  Google Scholar 

  33. de Sousa Farias SS, Nemezio MA, Corona SAM, Aires CP, Borsatto MC. Effects of low-level laser therapy combined with toluidine blue on polysaccharides and biofilm of Streptococcus mutans. Lasers Med Sci. 2016;31(5):1011–6.

    Article  PubMed  Google Scholar 

  34. Rossoni RD, Barbosa JO, de Oliveira FE, de Oliveira LD, Jorge AOC, Junqueira JC. Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy. Lasers Med Sci. 2014;29(5):1679–84.

    Article  PubMed  Google Scholar 

  35. Sousa AS, Prates RA, de Santi MESO, Lopes RG, Bussadori SK, Ferreira LR, et al. Photodynamic inactivation of Candida albicans biofilm: influence of the radiant energy and photosensitizer charge. Photodiagnosis Photodyn Ther. 2016;14:111–4.

    Article  CAS  PubMed  Google Scholar 

  36. Carpenter S, Kraus GA. Photosensitization is required for inactivation of equine infectious anemia virus by hypericin. Photochem Photobiol. 1991;53(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  37. Bielanski A, Dubuc C, Hare WCDCD, Myers DJJ, Eaglesome MDD. Inactivation of bovine herpesvirus-1 and bovine viral diarrhea virus in association with preimplantation bovine embryos using photosensitive agents. Theriogenology. 1992;38(4):633–44.

    Article  CAS  PubMed  Google Scholar 

  38. Eaglesome MD, Bielanski A, Hare WCD, Ruhnke HL. Studies on inactivation of pathogenic microorganisms in culture media and in bovine semen by photosensitive agents. Vet Microbiol. 1994;38(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  39. Washburn K, Streeter R, Saliki J, Lehenbauer T, Prado M. Photodynamic inactivation of an RNA enveloped virus in goat colostrum. Small Rumin Res. 2001;42(1):31–7.

    Article  Google Scholar 

  40. North J, Freeman S, Overbaugh J, Levy J, Lansman R. Photodynamic inactivation of retrovirus by benzoporphyrin derivative: a feline leukemia virus model. Transfusion. 1992;32(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  41. Wardlaw JL, Sullivan TJ, Lux CN, Austin FW. Photodynamic therapy against common bacteria causing wound and skin infections. Vet J. 2012;192(3):374–7.

    Article  CAS  PubMed  Google Scholar 

  42. Pires L, Bosco S de MG, da Silva NF, Kurachi C. Photodynamic therapy for pythiosis. Vet Dermatol. 2013;24(1):130–6.e30.

    Article  PubMed  Google Scholar 

  43. Pires L, Bosco S de MG, Baptista MS, Kurachi C. Photodynamic therapy in Pythium insidiosum – an in vitro study of the correlation of sensitizer localization and cell death. PLoS One. 2014;9(1):e85431.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nascimento CL, Ribeiro MS, Sellera FP, Dutra GH, Simões A, Teixeira CR. Comparative study between photodynamic and antibiotic therapies for treatment of footpad dermatitis (bumblefoot) in Magellanic penguins (Spheniscus magellanicus). Photodiagnosis Photodyn Ther. 2015;12(1):36–44.

    Article  PubMed  Google Scholar 

  45. Sellera FP, Sabino CP, Ribeiro MS, Gargano RG, Benites NR, Melville PA, et al. In vitro photoinactivation of bovine mastitis related pathogens. Photodiagnosis Photodyn Ther. 2016;13:276–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Lassálvia Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nascimento, C.L., Sellera, F.P., Ribeiro, M.S. (2016). Basic Studies in Antimicrobial PDT. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_11

Download citation

Publish with us

Policies and ethics