Skip to main content

Cellular Approaches to Adult Mammalian Heart Regeneration

  • Chapter
  • First Online:
  • 679 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Adult mammalian hearts lack significant regenerative potential, partially explaining why cardiomyopathies are a major cause of human death in the world. By contrast, adult lower vertebrates and neonatal mice can regenerate their heart after ischemic or physical injury. Significant efforts over the last several decades have led to advances in the understanding of cardiac biology and mechanisms of natural regeneration. For example, genetic lineage tracing evidence has shown that regenerative species use the expansion of pre-existing differentiated cardiomyocytes as a source of new myocardium. However, despite promising developments in basic science, therapeutic outcomes are modest with currently available therapy, underscoring the need for further discovery and translational research. Here, we review recent progress in the pursuit of human heart regeneration with a focus on cellular approaches. Highlights include somatic cell reprogramming, improved cardiac differentiation protocols, and a plethora of clinical trials, with some showing improvement in functional recovery after myocardial infarction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Braunwald E (1997) Shattuck lecture-cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med 337(19):1360–1369. doi:10.1056/NEJM199711063371906

    Article  CAS  PubMed  Google Scholar 

  2. Askoxylakis V, Thieke C, Pleger ST et al (2010) Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer 10(1):105. doi:10.1186/1471-2407-10-105

    Article  PubMed  PubMed Central  Google Scholar 

  3. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32(7):1552–1562. doi:10.1161/ATVBAHA.111.224915

    Article  CAS  PubMed  Google Scholar 

  4. Farb A, Kolodgie FD, Jenkins M et al (1993) Myocardial infarct extension during reperfusion after coronary artery occlusion: pathologic evidence. J Am Coll Cardiol 21(5):1245–1253. doi:10.1016/0735-1097(93)90253-W

    Article  CAS  PubMed  Google Scholar 

  5. Minezaki KK, Suleiman MS, Chapman RA (1994) Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload. J Physiol 476(3):459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrari R, Alfieri O, Curello S et al (1990) Occurrence of oxidative stress during reperfusion of the human heart. Circulation 81(1):201–211. doi:10.1161/01.CIR.81.1.201

    Article  CAS  PubMed  Google Scholar 

  7. Opie LH (1991) Role of calcium and other ions in reperfusion injury. Cardiovasc Drugs Ther 5(Suppl 2):237–247

    Article  PubMed  Google Scholar 

  8. Beyersdorf F (2009) The use of controlled reperfusion strategies in cardiac surgery to minimize ischaemia/reperfusion damage. Cardiovasc Res 83(2):262–268, 10.1093/cvr/cvp110

    Article  CAS  PubMed  Google Scholar 

  9. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123(1):92–100. doi:10.1172/JCI62874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26. doi:10.1038/nrcardio.2012.158

    Article  CAS  PubMed  Google Scholar 

  11. Rysä J, Leskinen H, Ilves M, Ruskoaho H (2005) Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension 45(5):927–933, 10.1093/cvr/cvp110

    Article  PubMed  CAS  Google Scholar 

  12. Dirkx E, da Costa Martins PA, De Windt LJ (2013) Regulation of fetal gene expression in heart failure. Biochim Biophys Acta 1832(12):2414–2424. doi:10.1016/j.bbadis.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  13. Kolwicz SC, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113(5):603–616. doi:10.1161/CIRCRESAHA.113.302095

    Article  CAS  PubMed  Google Scholar 

  14. Jaźwińska A, Sallin P (2016) Regeneration versus scarring in vertebrate appendages and heart. J Pathol 238(2):233–246. doi:10.1002/path.4644

    Article  PubMed  Google Scholar 

  15. Judd J, Xuan W, Huang GN (2015) Cellular and molecular basis of cardiac regeneration. Turk J Biol 40(2):265–275

    Google Scholar 

  16. Kikuchi K, Holdway JE, Werdich AA et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605. doi:10.1038/nature08804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jopling C, Sleep E, Raya M et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. doi:10.1038/nature08899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sallin P, de Preux Charles A-S, Duruz V, Pfefferli C, Jaźwińska A (2015) A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev Biol 399(1):27–40. doi:10.1016/j.ydbio.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Kikuchi K, Holdway JE, Major RJ et al (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20(3):397–404. doi:10.1016/j.devcel.2011.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lepilina A, Coon AN, Kikuchi K et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619, 10.1016/j.cell.2006.08.052

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Karra R, Dickson AL, Poss KD (2013) Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol 382(2):427–435. doi:10.1016/j.ydbio.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  22. Willems IE, Arends JW, Daemen MJ (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179(3):321–325. doi:10.1007/s12265-012-9406-3

    Article  CAS  PubMed  Google Scholar 

  23. Knowlton AA, Connelly CM, Romo GM et al (1992) Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89(4):1060–1068. doi:10.1172/JCI115685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Altrock E, Sens C, Wuerfel C et al (2015) Inhibition of fibronectin deposition improves experimental liver fibrosis. J Hepatol 62(3):625–633

    Article  CAS  PubMed  Google Scholar 

  25. Serini G, Bochaton-Piallat M-L, Ropraz P et al (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J Cell Biol 142(3):873–881. doi:10.1016/j.jhep.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhattacharyya S, Tamaki Z, Wang W et al (2014) FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med 6(232):232ra50. doi:10.1126/scitranslmed.3008264

    Google Scholar 

  27. Bettencourt-Dias M, Mittnacht S, Brockes JP (2003) Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116(Pt 19):4001–4009. doi:10.1242/jcs.00698

    Article  CAS  PubMed  Google Scholar 

  28. Witman N, Murtuza B, Davis B, Arner A, Morrison JI (2011) Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 354(1):67–76. doi:10.1016/j.ydbio.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  29. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187(2):249–253

    Article  CAS  PubMed  Google Scholar 

  30. Piatkowski T, Mühlfeld C, Borchardt T, Braun T (2013) Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components. Stem Cells Dev 22(13):1921–1931. doi:10.1089/scd.2012.0575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cano-Martínez A, Vargas-González A, Guarner-Lans V et al (2010) Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch Cardiol Mex 80(2):79–86

    PubMed  Google Scholar 

  32. Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119(Pt 22):4719–4729. doi:10.1242/jcs.03252

    Article  CAS  PubMed  Google Scholar 

  33. Mercer SE, Odelberg SJ, Simon H-G (2013) A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol 382(2):457–469. doi:10.1016/j.ydbio.2013.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bax NAM, van Marion MH, Shah B et al (2012) Matrix production and remodeling capacity of cardiomyocyte progenitor cells during in vitro differentiation. J Mol Cell Cardiol 53(4):497–508. doi:10.1016/j.yjmcc.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  35. Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. doi:10.1126/science.1200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP (2014) Do neonatal mouse hearts regenerate following heart apex resection? Stem Cell Reports 2(4):406–413. doi:10.1016/j.stemcr.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sadek HA, Martin JF, Takeuchi JK et al (2014) Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection. Stem Cell Reports 3(1):1. doi:10.1016/j.stemcr.2014.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bryant DM, O’Meara CC, Ho NN et al (2015) A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol 79:315–918. doi:10.1016/j.yjmcc.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  39. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271(5 Pt 2):H2183–H2189

    CAS  PubMed  Google Scholar 

  40. Ali SR, Hippenmeyer S, Saadat LV et al (2014) Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A 111(24):8850–8855. doi:10.1073/pnas.1408233111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tada T, Kishimoto H (1990) Ultrastructural and histological studies on closure of the mouse ductus arteriosus. Acta Anat 139(4):326–334

    Article  CAS  PubMed  Google Scholar 

  42. Canseco DC, Kimura W, Garg S et al (2015) Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol 65(9):892–900. doi:10.1016/j.jacc.2014.12.027

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dandel M, Weng Y, Siniawski H et al (2011) Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J 32(9):1148–1160. doi:10.1093/eurheartj/ehq353

    Article  PubMed  Google Scholar 

  44. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102. doi:10.1126/science.1164680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bergmann O, Zdunek S, Felker A et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575. doi:10.1016/j.cell.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  46. Soonpaa MH, Field LJ (1994) Assessment of cardiomyocyte DNA synthesis during hypertrophy in adult mice. Am J Physiol 266(4 Pt 2):H1439–H1445

    CAS  PubMed  Google Scholar 

  47. Olivetti G, Cigola E, Maestri R et al (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28(7):1463–1477. doi:10.1006/jmcc.1996.0137

    Article  CAS  PubMed  Google Scholar 

  48. Engel FB, Schebesta M, Keating MT (2006) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41(4):601–612. doi:10.1016/j.yjmcc.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  49. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492. doi:10.1016/j.cell.2005.0

    Article  CAS  PubMed  Google Scholar 

  50. Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA (2009) Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9(2):305–311. doi:10.1038/nprot.2014.021

    Article  CAS  Google Scholar 

  51. Curaj A, Simsekyilmaz S, Staudt M, Liehn E (2015) Minimal invasive surgical procedure of inducing myocardial infarction in mice. J Vis Exp 99, e52197. doi:10.3791/52197

    Google Scholar 

  52. Xu Z, Alloush J, Beck E, Weisleder N (2015) A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery. J Vis Exp 86, e51329. doi:10.3791/51329

    Google Scholar 

  53. Chong JJH, Murry CE (2014) Cardiac regeneration using pluripotent stem cells–progression to large animal models. Stem Cell Res 13(3 Pt B):654–665. doi:10.1016/j.scr.2014.06.005

    Google Scholar 

  54. Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2(3):262–271. doi:10.1161/CIRCHEARTFAILURE.108.814459

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776. doi:10.1016/S0092-8674(03)00687-1

    Article  CAS  PubMed  Google Scholar 

  56. Zaruba M-M, Soonpaa M, Reuter S, Field LJ (2010) Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation 121(18):1992–2000. doi:10.1161/CIRCULATIONAHA.109.909093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jesty SA, Steffey MA, Lee FK et al (2012) C-kit + precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A 109(33):13380–13385. doi:10.1073/pnas.1208114109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sultana N, Zhang L, Yan J et al (2015) Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun 6:8701. doi:10.1038/ncomms9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857. doi:10.1016/S0140-6736(11)61590-0

    Article  PubMed  PubMed Central  Google Scholar 

  60. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318. doi:10.1073/pnas.2132126100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Uchida S, De Gaspari P, Kostin S et al (2013) Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 1(5):397–410. doi:10.1016/j.stemcr.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van Berlo JH, Molkentin JD (2014) An emerging consensus on cardiac regeneration. Nat Med 20(12):1386–1393. doi:10.1038/nm.3764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cai C-L, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889. doi:10.1016/S1534-5807(03)00363-0

    Article  CAS  PubMed  Google Scholar 

  64. Laugwitz K-L, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653. doi:10.1038/nature03215

    Article  CAS  PubMed  Google Scholar 

  65. Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6):1151–1165. doi:10.1016/j.cell.2006.10.029

    Article  CAS  PubMed  Google Scholar 

  66. Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14(8):529–541. doi:10.1038/nrm3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(Suppl II):247–256. doi:10.1161/01.CIR.100.suppl_2.II-247

    Google Scholar 

  69. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436. doi:10.1038/86498

    Article  CAS  PubMed  Google Scholar 

  70. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mathiasen AB, Qayyum AA, Jørgensen E et al (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36(27):1744–1753. doi:10.1093/eurheartj/ehv136

    Article  PubMed  Google Scholar 

  72. Nowbar AN, Mielewczik M, Karavassilis M et al (2014) Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. Br Med J 348:g2688. doi:10.1136/bmj.g2688

    Article  Google Scholar 

  73. Gyöngyösi M, Wojakowski W, Lemarchand P et al (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116(8):1346–1360. doi:10.1161/CIRCRESAHA.116.304346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mathur A. BAMI. The effect of intracoronary reinfusion of Bone Marrow-derived Mononuclear Cells (BM-MNC) on all cause mortality in acute myocardial infarction. https://clinicaltrials.gov/ct2/show/nct01569178. Accessed 5 Apr 2016

  75. Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. doi:10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  76. Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 154(2):1228–1238. doi:10.1016/j.cell.2013.05.006

    Article  CAS  Google Scholar 

  77. Chung YG, Eum JH, Lee JE et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14(6):777–780. doi:10.1016/j.stem.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  78. Nussbaum J, Minami E, Laflamme MA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357. doi:10.1096/fj.06-6769com

    Article  CAS  PubMed  Google Scholar 

  79. Swijnenburg R-J, Tanaka M, Vogel H et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(Suppl 9):I166–I172. doi:10.1161/CIRCULATIONAHA.104.525824

    PubMed  Google Scholar 

  80. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. doi:10.1038/nbt1327

    Article  CAS  PubMed  Google Scholar 

  81. Liao S-Y, Liu Y, Siu C-W et al (2010) Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm 7(12):1852–1859. doi:10.1016/j.hrthm.2010.09.006

    Article  PubMed  Google Scholar 

  82. Shiba Y, Fernandes S, Zhu W-Z et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325. doi:10.1038/nature11317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chong JJH, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. doi:10.1038/nature13233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kuppusamy KT, Jones DC, Sperber H et al (2015) Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A 112(21):E2785–E2794. doi:10.1073/pnas.1424042112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roell W, Lewalter T, Sasse P et al (2007) Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450(7171):819–824. doi:10.1038/nature06321

    Article  CAS  PubMed  Google Scholar 

  86. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834. doi:10.1161/CIRCRESAHA.113.300219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  88. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  89. Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215. doi:10.1038/nature10135

    Article  CAS  PubMed  Google Scholar 

  90. Xie M, Cao N, Ding S (2014) Small molecules for cell reprogramming and heart repair: progress and perspective. ACS Chem Biol 9(1):34–44. doi:10.1021/cb400865w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384. doi:10.1016/j.stem.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  92. Ieda M, Tsuchihashi T, Ivey KN et al (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16(2):233–244. doi:10.1016/j.devcel.2008.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qian L, Huang Y, Spencer CI et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598. doi:10.1038/nature11044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song K, Nam Y-J, Luo X et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604. doi:10.1038/nature11139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Srivastava D, Ieda M, Fu J, Qian L (2012) Cardiac repair with thymosin β4 and cardiac reprogramming factors. Ann N Y Acad Sci 1270:66–72. doi:10.1111/j.1749-6632.2012.06696.x

    Article  CAS  PubMed  Google Scholar 

  96. Wang H, Cao N, Spencer CI et al (2014) Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep 6(5):951–960. doi:10.1016/j.celrep.2014.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jayawardena TM, Egemnazarov B, Finch EA et al (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473. doi:10.1161/CIRCRESAHA.112.269035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nam Y-J, Song K, Luo X et al (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A 110(14):5588–5593. doi:10.1073/pnas.1301019110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou H, Dickson ME, Kim MS, Bassel-Duby R, Olson EN (2015) Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc Natl Acad Sci U S A 112(38):11864–11869. doi:10.1073/pnas.1516237112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao Y, Londono P, Cao Y et al (2015) High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun 6:8243. doi:10.1038/ncomms9243

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nagalingam RS, Safi HA, Czubryt MP (2015) Gaining myocytes or losing fibroblasts: challenges in cardiac fibroblast reprogramming for infarct repair. J Mol Cell Cardiol 93:108–114. doi:10.1016/j.yjmcc.2015.11.029

    Article  PubMed  CAS  Google Scholar 

  102. Zhang Y, Cao N, Huang Y et al (2016) Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 18(3):368–381. doi:10.1016/j.stem.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  103. Nag AC, Cheng M (1986) Biochemical evidence for cellular dedifferentiation in adult rat cardiac muscle cells in culture: expression of myosin isozymes. Biochem Biophys Res Commun 137(2):855–862

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Y, Li T-S, Lee S-T et al (2010) Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 5(9), e12559. doi:10.1371/journal.pone.0012559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhang Y, Zhong JF, Qiu H et al (2015) Epigenomic reprogramming of adult cardiomyocyte-derived cardiac progenitor cells. Sci Rep 5:17686. doi:10.1038/srep17686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li T-S, Cheng K, Lee S-T et al (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28(11):2088–2098. doi:10.1002/stem.532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Malliaras K, Makkar RR, Smith RR et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived autologous stem cells to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122. doi:10.1016/j.jacc.2013.08.724

    Article  PubMed  Google Scholar 

  108. Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904. doi:10.1016/S0140-6736(12)60195-0

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ibrahim AG-E, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619. doi:10.1016/j.stemcr.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Allogeneic heart stem cells to achieve myocardial regeneration—full text view. [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01458405. Accessed 6 Apr 2016

  111. Chaudhry HW, Dashoush NH, Tang H et al (2004) Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 279(34):35858–35866. doi:10.1074/jbc.M404975200

    Article  CAS  PubMed  Google Scholar 

  112. Ebelt H, Hufnagel N, Neuhaus P et al (2005) Divergent siblings: E2F2 and E2F4 but not E2F1 and E2F3 induce DNA synthesis in cardiomyocytes without activation of apoptosis. Circ Res 96(5):509–517. doi:10.1161/01.RES.0000159705.17322.57

    Article  CAS  PubMed  Google Scholar 

  113. Miller C, Rulfs J, Jaspers SR, Buckholt M, Miller TB (1994) Transformation of adult ventricular myocytes with the temperature sensitive A58 (tsA58) mutant of the SV40 large T antigen. Mol Cell Biochem 136(1):29–34

    Article  CAS  PubMed  Google Scholar 

  114. Eulalio A, Mano M, Dal Ferro M et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381. doi:10.1038/nature11739

    Article  CAS  PubMed  Google Scholar 

  115. Tian Y, Liu Y, Wang T et al (2015) A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7(279):279ra38. doi:10.1126/scitranslmed.3010841

    Google Scholar 

  116. Aguirre A, Montserrat N, Zachiggna S et al (2014) In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 15(5):589–604. doi:10.1016/j.stem.2014.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Polizzotti BD, Ganapathy B, Walsh S et al (2015) Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med 7(281):281ra45. doi:10.1126/scitranslmed.aaa5171

    Google Scholar 

  118. Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270. doi:10.1016/j.cell.2009.04.060

    Article  CAS  PubMed  Google Scholar 

  119. Dong J, Feldmann G, Huang J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133. doi:10.1016/j.cell.2007.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin Z, von Gise A, Zhou P et al (2014) Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 115(3):354–363. doi:10.1161/CIRCRESAHA.115.303632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heallen T, Morikawa Y, Leach J et al (2013) Hippo signaling impedes adult heart regeneration. Development 140(23):4683–4690. doi:10.1242/dev.102798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xin M, Kim Y, Sutherland LB et al (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110(34):13839–13844. doi:10.1073/pnas.1313192110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mizuno T, Yau TM, Weisel RD, Kiani CG, Li R-K (2005) Elastin stabilizes an infarct and preserves ventricular function. Circulation 112(Suppl 9):I81–I88. doi:10.1073/pnas.1313192110

    PubMed  Google Scholar 

  124. Piek A, de Boer RA, Silljé HHW (2016) The fibrosis-cell death axis in heart failure. Heart Fail Rev 21(2):199–211. doi:10.1007/s10741-016-9536-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Engler AJ, Carag-Krieger C, Johnson CP et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(Pt 22):3794–3802. doi:10.1242/jcs.029678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Patwari P, Lee RT (2008) Mechanical control of tissue morphogenesis. Circ Res 103(3):234–343. doi:10.1161/CIRCRESAHA.108.175331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hove JR, Köster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177. doi:10.1038/nature01282

    Article  CAS  PubMed  Google Scholar 

  128. Jacot JG, Martin JC, Hunt DL (2010) Mechanobiology of cardiomyocyte development. J Biomech 43(1):93–98. doi:10.1016/j.jbiomech.2009.09.014

    Article  PubMed  Google Scholar 

  129. Arshi A, Nakashima Y, Nakano H et al (2013) Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Sci Technol Adv Mater 14(2):pii:025003. doi:10.1088/1468-6996/14/2/025003

    Google Scholar 

  130. Young JL, Kretchmer K, Ondeck MG, Zambon AC, Engler AJ (2014) Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation. Sci Rep 14:6425. doi:10.1038/srep06425

    Article  CAS  Google Scholar 

  131. Wei K, Serpooshan V, Hurtado C et al (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525(7570):479–485. doi:10.1038/nature15372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100(2):193–202. doi:10.1161/01.CIR.100.2.193

    Article  CAS  PubMed  Google Scholar 

  133. Hong KU, Guo Y, Li Q-H, Cao P et al (2014) C-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS One 9(5), e96725. doi:10.1371/journal.pone.0096725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Santhakumar R, Vidyasekar P, Verma RS (2014) Cardiogel: a nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells. PLoS One 9(12), e114697. doi:10.1371/journal.pone.0114697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Hasan A, Khattab A, Islam MA et al (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2:1500122. doi:10.1002/advs.201500122

    Article  CAS  Google Scholar 

  136. Chavakis E, Koyanagi M, Dimmeler S (2010) Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 121(2):325–335. doi:10.1161/CIRCULATIONAHA.109.901405

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo N. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Judd, J., Huang, G.N. (2016). Cellular Approaches to Adult Mammalian Heart Regeneration. In: Wilson-Rawls, J., Kusumi, K. (eds) Innovations in Molecular Mechanisms and Tissue Engineering. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-44996-8_6

Download citation

Publish with us

Policies and ethics