Skip to main content

Regeneration: Lessons from the Lizard

  • Chapter
  • First Online:
Innovations in Molecular Mechanisms and Tissue Engineering

Abstract

While regeneration of appendages is observed in a number of vertebrates, including teleost fish, amphibians, and squamate reptiles, birds and mammals, including humans, have very limited capacity. The combination of cellular and tissue-based studies together with high throughput sequencing technologies now permit investigations into the molecular mechanisms underlying regeneration of appendages in vertebrates. As the first squamate reptile with a fully sequenced and annotated genome, the green anole lizard, Anolis carolinensis, has yielded insights into both the cellular and molecular programs for regeneration. RNA-Seq based studies have identified both developmental and repair mechanisms in anole tail regeneration, particularly pathways regulating formation of the wound epithelium, modulation of the immune response, musculoskeletal development, remodeling of the extracellular matrix, and activation of Wnt/β-catenin and FGF signaling pathways. Additionally, both conserved and novel microRNAs have been identified in tail regeneration in the anole, giving insights into upstream regulators of the regenerative process. Ongoing comparative studies of lizard regeneration could potentially be translated into future regenerative therapeutics for appendage biological prosthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agata K, Inoue T (2012) Survey of the differences between regenerative and non-regenerative animals. Dev Growth Differ 54(2):143–152. doi:10.1111/j.1440-169X.2011.01323.x

    Article  CAS  PubMed  Google Scholar 

  2. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25(3):161–170. doi:10.1016/j.tree.2009.08.005

    Article  PubMed  Google Scholar 

  3. Cañestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8:932–942. doi:10.1038/nrg2226

    Article  PubMed  CAS  Google Scholar 

  4. Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ, Lindblad-Toh K, Di Palma F, Alföldi J, Huentelman MJ, Kusumi K (2013) Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 14:49. doi:10.1186/1471-2164-14-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fisher RE, Geiger LA, Stroik LK, Hutchins ED, George RM, Denardo DF, Kusumi K, Rawls JA, Wilson-Rawls J (2012) A histological comparison of the original and regenerated tail in the green anole, Anolis carolinensis. Anat Rec (Hoboken) 295(10):1609–1619. doi:10.1002/ar.22537

    Article  Google Scholar 

  6. Hutchins ED, Markov GJ, Eckalbar WL, George RM, King JM, Tokuyama MA, Geiger LA, Emmert N, Ammar MJ, Allen AN, Siniard AL, Corneveaux JJ, Fisher RE, Wade J, DeNardo DF, Rawls JA, Huentelman MJ, Wilson-Rawls J, Kusumi K (2014) Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms. PLoS One 9, e105004. doi:10.1371/journal.pone.0105004.s014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ritzman TB, Stroik LK, Julik E, Hutchins ED, Lasku E, Denardo DF, Wilson-Rawls J, Rawls JA, Kusumi K, Fisher RE (2012) The gross anatomy of the original and regenerated tail in the green anole (Anolis carolinensis). Anat Rec (Hoboken) 295(10):1596–1608. doi:10.1002/ar.22524

    Article  Google Scholar 

  8. Delorme SL, Lungu IM, Vickaryous MK (2012) Scar-free wound healing and regeneration following tail loss in the leopard gecko, Eublepharis macularius. Anat Rec (Hoboken) 295(10):1575–1595. doi:10.1002/ar.22490

    Article  CAS  Google Scholar 

  9. Gilbert EAB, Payne SL, Vickaryous MK (2013a) The anatomy and histology of caudal autotomy and regeneration in lizards. Physiol Biochem Zool 86(6):631–644. doi:10.1086/673889

    Article  PubMed  Google Scholar 

  10. Gilbert RWD, Vickaryous MK, Viloria-Petit AM (2013b) Characterization of TGFβ signaling during tail regeneration in the leopard gecko (Eublepharis macularius). Dev Dyn 242(7):886–896. doi:10.1002/dvdy.23977

    Article  CAS  PubMed  Google Scholar 

  11. McLean KE, Vickaryous MK (2011) A novel amniote model of epimorphic regeneration: the leopard gecko, Eublepharis macularius. BMC Dev Biol 11(1):50. doi:10.1186/1471-213X-11-50

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ, Allen AN, Corneveaux JJ, Losos JB, DeNardo DF, Huentelman MJ, Wilson-Rawls J, Rawls A, Kusumi K (2012) Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol 363(1):308–319. doi:10.1016/j.ydbio.2011.11.021

    Article  CAS  PubMed  Google Scholar 

  13. Sanger TJ, Losos JB, Gibson-Brown JJ (2008) A developmental staging series for the lizard genusAnolis: a new system for the integration of evolution, development, and ecology. J Morphol 269:129–137. doi:10.1002/jmor.10563

    Article  PubMed  Google Scholar 

  14. Tollis M, Boissinot S (2014) Genetic variation in the green anole lizard (Anolis carolinensis) reveals island refugia and a fragmented Florida during the quaternary. Genetica 142(1):59–72. doi:10.1007/s10709-013-9754-1

    Article  CAS  PubMed  Google Scholar 

  15. Wordley C, Slate J, Stapley J (2011) Mining online genomic resources in Anolis carolinensis facilitates rapid and inexpensive development of cross-species microsatellite markers for the Anolis lizard genus. Mol Ecol Resour 11(1):126–133. doi:10.1111/j.1755-0998.2010.02863.x

    Article  CAS  PubMed  Google Scholar 

  16. Lovern MB, Wade J (2003) Yolk testosterone varies with sex in eggs of the lizard, Anolis carolinensis. J Exp Zool A Comp Exp Biol 295(2):206–210. doi:10.1002/jez.a.10225

    Article  PubMed  CAS  Google Scholar 

  17. Wade J (2012) Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards. Gen Comp Endocrinol 176(3):456–460. doi:10.1016/j.ygcen.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  18. Montuelle SJ, Herrel A, Libourel PA, Reveret L, Bels VL (2009) Locomotor-feeding coupling during prey capture in a lizard (Gerrhosaurus major): effects of prehension mode. J Exp Biol 212(Pt 6):768–777. doi:10.1242/jeb.026617

    Article  PubMed  Google Scholar 

  19. Alföldi J, Di Palma F, Grabherr M et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591. doi:10.1038/nature10390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Alibardi L (1995) Development of the axial cartilaginous skeleton in the regenerating tail of lizards. Bull Assoc Anat (Nancy) 79(244):3–9

    CAS  Google Scholar 

  21. Alibardi L (1995) Muscle differentiation and morphogenesis in the regenerating tail of lizards. J Anat 186(Pt 1):143–151

    PubMed  PubMed Central  Google Scholar 

  22. Alibardi L (2010) Morphological and cellular aspects of tail and limb regeneration in lizards. A model system with implications for tissue regeneration in mammals. Adv Anat Embryol Cell Biol 207:iii–v–x– 1–109

    Google Scholar 

  23. Alibardi L (2014) Observations on lumbar spinal cord recovery after lesion in lizards indicates regeneration of a cellular and fibrous bridge reconnecting the injured cord. J Dev Biol 2(4):210–229. doi:10.3390/jdb2040210

    Article  Google Scholar 

  24. Alibardi L (2014) Ultrastructural observations on lumbar spinal cord recovery after lesion in lizard indicates axonal regeneration and neurogenesis. Int J Biol 7(1). doi:10.5539/ijb.v7n1p122

    Google Scholar 

  25. Chlebowski JS, Przbylski RJ, Cox PG (1973) Ultrastructural studies of lizard (I) myogenesis in vitro. Dev Biol 33(1):80–99

    Article  CAS  PubMed  Google Scholar 

  26. Cox PG (1968) In vitro myogenesis of promuscle cells from the regenerating tail of the lizard, Anolis carolinensis. J Morphol 126(1):1–18. doi:10.1002/jmor.1051260102

    Article  CAS  PubMed  Google Scholar 

  27. Egar M, Simpson SB Jr, Singer M (1970) The growth and differentiation of the regenerating spinal cord of the lizard, Anolis carolinensis. J Morphol 131(2):131–151. doi:10.1002/jmor.1051310202

    Article  CAS  PubMed  Google Scholar 

  28. Kamrin RP, Singer M (1955) The influence of the spinal cord in regeneration of the tail of the lizard, Anolis carolinensis. J Exp Zool 128:611–627

    Article  Google Scholar 

  29. Maderson PF, Licht P (1968) Factors influencing rates of tail regeneration in the lizard Anolis carolinensis. Experientia 24(10):1083–1086

    Article  CAS  PubMed  Google Scholar 

  30. Simpson SB Jr (1968) Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J Comp Neurol 134(2):193–210. doi:10.1002/cne.901340207

    Article  PubMed  Google Scholar 

  31. Turner JE, Singer M (1973) Some morphological and ultrastructural changes in the ependyma of the amputation stump during early regeneration of the tail in the lizard, Anolis carolinensis. J Morphol 140(3):257–269. doi:10.1002/jmor.1051400302

    Article  Google Scholar 

  32. Zika JM (1969) A histological study of the regenerative response in a lizard, Anolis carolinensis. J Exp Zool 172(1):1–8. doi:10.1002/jez.1401720102

    Article  CAS  PubMed  Google Scholar 

  33. Bellairs AD, Bryant SV (1985) Autotomy and Regeneration in Reptiles. In: Gans C, Billet F (eds) Biology of the reptilia. Wiley and Sons, New York, pp 301–409

    Google Scholar 

  34. Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K (2005) Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat 287(1):14–24. doi:10.1002/ar.b.20082

    Article  PubMed  Google Scholar 

  35. Borgens RB (1982) Mice regrow the tips of their foretoes. Science 217(4561):747–750

    Article  CAS  PubMed  Google Scholar 

  36. Han M, Yang X, Lee J, Allan CH, Muneoka K (2008) Development and regeneration of the neonatal digit tip in mice. Dev Biol 315(1):125–135. doi:10.1016/j.ydbio.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  37. Illingworth CM (1974) Trapped fingers and amputated finger tips in children. J Pediatr Surg 9(6):853–858

    Article  CAS  PubMed  Google Scholar 

  38. Singer M, Weckessar EC, Geraudie J, Maier CE, Singer J (1987) Open finger tip healing and replacement after distal amputation in rhesis monkey with comparison to limb regeneration in lower vertebrates. Anat Embryol (Berl) 177(1):29–36

    Google Scholar 

  39. Godwin J (2014) The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays 36(9):861–871. doi:10.1002/bies.201300144

    Article  CAS  PubMed  Google Scholar 

  40. Lozito TP, Tuan RS (2015) Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog. Dev Biol 399(2):249–262. doi:10.1016/j.ydbio.2014.12.036

    Article  CAS  PubMed  Google Scholar 

  41. Nambiar VV, Bhatt IY, Deshmuhk PA, Jape RR, Jivani PN, Kavale HR, Prakushkar SS, Ramchandran AV (2008) Assessment of extracellular matrix remodeling during tail regeneration in the lizard Hemidactylus flaviviridis. J Endocrinol Reprod 12(2):67–72

    Google Scholar 

  42. Poyntz SV, Bellairs A’A (1965) Natural limb regeneration in Lacerta vivipara. Br J Herpetol 3:204–205

    Google Scholar 

  43. Marcucci E (1930) II potere rigenerativ degli arti nei Rettili. Richerche sperimentale sopra alcune specie di Sauri. Archo Zool Ital 14:27–252

    Google Scholar 

  44. Campbell LJ, Crews CM (2008) Woul epidermis formation and function in urodele amphibian limb regeneration. Cell Mol Life Sci 65:73–79. doi:10.1007/s00018-007-7433-z

    Google Scholar 

  45. Murawala P, Tanaka EM, Currie JD (2012) Regeneration: the ultimate would healing. Semin Cell Dev Biol 23(9):954–962. doi:10.1016/j.semcdb.2012.09.013

    Google Scholar 

  46. Christensen RN, Tassava RA (2000) Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn 217(2):216–224. doi:10.1002/(SICI)1097-0177(200002)217:2<216::AID-DVDY8>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  47. Christensen RN, Weinstein M, Tassava RA (2002) Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 223(2):193–203. doi:10.1002/dvdy.10049

    Article  CAS  PubMed  Google Scholar 

  48. Han MJ, An JY, Kim WS (2001) Expression patterns of Fgf-8 during development and limb regeneration of the axolotl. Dev Dyn 220(1):40–48. doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1085>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  49. Stocum DL, Cameron JA (2011) Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 240(5):943–968. doi:10.1002/dvdy.22553

    Article  PubMed  Google Scholar 

  50. Yokoyama H (2008) Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ 50(1):13–22. doi:10.1111/j.1440-169X.2007.00973.x

    Article  CAS  PubMed  Google Scholar 

  51. Godwin J, Kuraitis D, Rosenthal N (2014) Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 56:47–55. doi:10.1016/j.biocel.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  52. Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279(1):86–98. doi:10.1016/j.ydbio.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  53. Fahmy GH, Sicard RE (2002) A role for effectors of cellular immunity in epimorphic regeneration of amphibian limbs. In Vivo 16(3):179–184

    CAS  PubMed  Google Scholar 

  54. Godwin JW, Brockes JP (2006) Regeneration, tissue injury and the immune response. J Anat 209(4):423–432. doi:10.1111/j.1469-7580.2006.00626.x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110(23):9415–9420. doi:10.1073/pnas.1300290110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Godwin JW, Rosenthal N (2014) Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 87(1–2):66–75. doi:10.1016/j.diff.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  57. Harty M, Neff AW, King MW, Mescher AL (2003) Regeneration or scarring: an immunologic perspective. Dev Dyn 226(2):268–279. doi:10.1002/dvdy.10239

    Article  PubMed  Google Scholar 

  58. Mescher AL, Neff AW (2006) Limb regeneration in amphibians: immunological considerations. ScientificWorldJournal 6(Suppl 1):1–11. doi:10.1100/tsw.2006.323

    Article  PubMed  Google Scholar 

  59. Alibardi L (2010) Ultrastructural features of the process of wound healing after tail and limb amputation in lizard. Acta Zool 91(3):306–318. doi:10.1111/j.1463-6395.2009.00409.x

    Google Scholar 

  60. Alibardi L, Celeghin A, Valle LD (2012) Wounding in lizards results in the release of beta-defensins at the wound site and formation of an antimicrobial barrier. Dev Comp Immunol 36(3):557–565. doi:10.1016/j.dci.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  61. Barron L, Wynn TA (2011) Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur J Immunol 41(9):2509–2514. doi:10.1002/eji.201141869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller W, Roers A, Eming SA (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184(7):3964–3977. doi:10.4049/jimmunol.0903356

    Article  CAS  PubMed  Google Scholar 

  63. Martini R, Fischer S, López-Vales R, David S (2008) Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 56(14):1566–1577. doi:10.1002/glia.20766

    Article  PubMed  Google Scholar 

  64. Nucera S, Biziato D, De Palma M (2011) The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int J Dev Biol 55(4–5):495–503. doi:10.1387/ijdb.103227sn

    Article  CAS  PubMed  Google Scholar 

  65. Delavary BM, van der Veer WM, van Egmond M (2011) Macrophages in skin injury and repair. Immunobiol 216(7):753–762. doi:10.1016/j.imbio.2011.01.001

    Article  CAS  Google Scholar 

  66. Stefater JA 3rd, Ren S, Lang RA, Duffield JS (2011) Metchnikoff’s policemen: macrophages in development, homeostasis and regeneration. Trends Mol Med 17(12):743–752. doi:10.1016/j.molmed.2011.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Butler EG, O’Brien JP (1942) Effects of localized X‐radiation on regeneration of the urodele limb. Anat Rec (Hoboken) 84(4):407–413. doi:10.1002/ar.1090840408

    Article  Google Scholar 

  68. Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298(5600):1993–1996. doi:10.1126/science.1077804

    Article  CAS  PubMed  Google Scholar 

  69. Hay ED, Fischman DA (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59

    Article  CAS  PubMed  Google Scholar 

  70. Iten LE, Bryant SV (1973) Forelimb regeneration from different levels of amputation in the newt, Notophthalmus viridescens: length, rate, and stages. Wilhelm Roux Arch Entwickl Mech Org 173(4):263–282. doi:10.1007/BF00575834

    Article  Google Scholar 

  71. Mescher AL (1996) The cellular basis of limb regeneration in urodeles. Int J Dev Biol 40(4):785–795

    CAS  PubMed  Google Scholar 

  72. Namenwirth M (1974) The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol 41(1):42–56

    Article  CAS  PubMed  Google Scholar 

  73. Peadon AM, Singer M (1966) The blood vessels of the regenerating limb of the adult newt, Triturus. J Morphol 118(1):79–89. doi:10.1002/jmor.1051180106

    Article  CAS  PubMed  Google Scholar 

  74. Singer M (1974) Trophic functions of the neuron. VI. Other trophic systems. Neurotrophic control of limb regeneration in the newt. Ann N Y Acad Sci 228:308–322

    Article  CAS  PubMed  Google Scholar 

  75. Smith AR, Wolpert L (1975) Nerves and angiogenesis in amphibian limb regeneration. Nature 257(5523):224–225

    Article  CAS  PubMed  Google Scholar 

  76. Thornton CS (1938) The histogenesis of the regenerating fore limb of larval Ambystoma after exarticulation of the humerus. J Morphol 62(2):219–241. doi:10.1002/jmor.1050620204

    Article  Google Scholar 

  77. Wallace BM, Wallace H (1973) Participation of grafted nerves in amphibian limb regeneration. J Embryol Exp Morphol 29(3):559–570

    CAS  PubMed  Google Scholar 

  78. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65. doi:10.1038/nature08152

    Article  CAS  PubMed  Google Scholar 

  79. Tanaka EM (2016) The molecular and cellular choreography of appendage regeneration. Cell 165:1598–1608. doi:10.1016/j.cell.2016.05.038

    Article  CAS  PubMed  Google Scholar 

  80. Sandoval-Guzmán T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14(2):174–187. doi:10.1016/j.stem.2013.11.007

    Article  PubMed  CAS  Google Scholar 

  81. Cox PG (1969) Some aspects of tail regeneration in the lizard, Anolis carolinensis. I. A description based on histology and autoradiography. J Exp Zool 171(2):127–149. doi:10.1002/jez.1401710202

    Article  Google Scholar 

  82. Hughes A, New D (1959) Tail regeneration in the geckonid lizard, Sphaerodactylus. J Embryol Exp Morphol 7:281–302

    CAS  PubMed  Google Scholar 

  83. Kahn EB, Simpson SB Jr (1974) Satellite cells in mature, uninjured skeletal muscle of the lizard tail. Dev Biol 37(1):219–223

    Article  CAS  PubMed  Google Scholar 

  84. Simpson SB Jr (1970) Studies on regeneration of the lizard’s tail. Am Zool 10:157–165

    Article  PubMed  Google Scholar 

  85. Firulli BA, Redick BA, Conway SJ, Firulli AB (2007) Mutations within helix I of Twist1 result in distinct limb defects and variation of DNA binding affinities. J Biol Chem 282(37):27536–27546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krawchuk D, Weiner SJ, Chen YT, Lu BC, Costantini F, Behringer RR, Laufer E (2010) Twist1 activity thresholds define multiple functions in limb development. Dev Biol 347(1):133–146. doi:10.1016/j.ydbio.2010.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Loebel DA, Hor AC, Bildsoe H, Jones V, Chen YT, Behringer RR, Tam PP (2012) Regionalized twist1 activity in the forelimb bud drives the morphogenesis of the proximal and preaxial skeleton. Dev Biol 362(2):132–140. doi:10.1016/j.ydbio.2011.11.020

    Article  CAS  PubMed  Google Scholar 

  88. O’Rourke MP, Tam PP (2002) Twist functions in mouse development. Int J Dev Biol 46(4):401–413

    PubMed  Google Scholar 

  89. Tavares AT, Izpisúja-Belmonte JC, Rodriguez-León J (2001) Developmental expression of chick twist and its regulation during limb patterning. Int J Dev Biol 45(5–6):707–713

    CAS  PubMed  Google Scholar 

  90. Zuniga A, Quillet R, Perrin-Schmitt F, Zeller R (2002) Mouse twist is required for fibroblast growth factor-mediated epithelial-mesenchymal signalling and cell survival during limb morphogenesis. Mech Dev 114(1–2):51–59

    Article  CAS  PubMed  Google Scholar 

  91. Kragl M, Toensch K, Nusslein I, Tazaki A, Tanguchi Y, Tarui H, Hayashi T, Agata K, Tanaka EM (2013) Muscle and connective tissue progenitor populations show sidtinct Twist1 and Twist3 expression progiles during axolotl limb regeneration. Dev Biol 373(1):196–204. doi:10.1016/j.ydbio.2012.10.019

    Google Scholar 

  92. Simpson SB Jr (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. i. Initiation of regeneration and cartilage differentiation: the role of ependyma. J Morphol 114:425–435. doi:10.1002/jmor.1051140305

    Article  PubMed  Google Scholar 

  93. Whimster IW (1978) Nerve supply as a stimulator of the growth of tissues including skin. Clin Exp Dermatol 3(4):389–410

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Wang R, Jiang S, Zhou W, Liu Y, Wang Y, Gu Q, Gu Y, Dong Y, Liu M, Gu X, Ding F, Gu X (2011) Gecko CD59 is implicated in proximodistal identity during tail regeneration. PLoS One 6(3), e17878. doi:10.1371/journal.pone.0017878.g008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tollis M, Hutchins ED, Kusumi K (2014) Reptile genomes open the frontier for comparative analysis of amniote development and regeneration. Int J Dev Biol 58:863–871. doi: 10.1387/ijdb.140316kk

    Google Scholar 

  96. Kim J, Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K, Lee I (2010) Wnt5a induces endothelial inflammation via -catenin-independent signaling. J Immunol 185:1274–1282. doi:10.4049/jimmunol.1000181

    Article  CAS  PubMed  Google Scholar 

  97. Knapp D, Schulz H, Rascon CA, Volkmer M, Scholz J, Nacu E, Le M, Novozhilov S, Tazaki A, Protze S, Jacob T, Hubner N, Habermann B, Tanaka EM (2013) Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8(5), e61352. doi:10.1371/journal.pone.0061352.s011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sugiura T, Tazaki A, Ueno N (2009) Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration. Mech Dev 126(1–2):56–67. doi:10.1016/j.mod.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  99. Ghosh S, Roy S, Séguin C, Bryant SV, Gardiner DM (2008) Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs. Dev Growth Differ 50(4):289–297. doi:10.1111/j.1440-169X.2008.01000.x

    Article  CAS  PubMed  Google Scholar 

  100. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2006) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134(3):479–489. doi:10.1242/dev.001123

    Article  PubMed  CAS  Google Scholar 

  101. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  PubMed  Google Scholar 

  102. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  CAS  PubMed  Google Scholar 

  103. Pourrajab F, Babaei Zarch M, BaghiYazdi M, Hekmatimoghaddam S, Zare-Khormizi MR (2014) MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation. Int J Biochem Cell Biol 55:318–328

    Article  CAS  PubMed  Google Scholar 

  104. Undi RB, Kandi R, Gutti RK (2013) MicroRNAs as haematopoiesis regulators. Adv Hematol 2013:695754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kroesen BJ, Teteloshvili N, Czepiel KS (2015) Immuno‐miRs: critical regulators of T‐cell development, function and ageing. Immunology 144:1–10. doi:10.1111/imm.12367

    Article  CAS  PubMed  Google Scholar 

  106. Williams AH, Liu N, van Rooij E, Olson EN (2009) MicroRNA control of muscle development and disease. Curr Opin Cell Biol 21:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Holman EC, Campbell LJ, Hines J, Crews CM (2012) Microarray analysis of microrna expression during axolotl limb regeneration. PLoS One 7, e41804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sehm T, Sachse C, Frenzel C, Echeverri K (2009) miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 334:468–480

    Article  CAS  PubMed  Google Scholar 

  109. Nakamura K, Maki N, Trinh A, Trask HW, Gui J, Tomlinson CR, Tsonis PA (2010) miRNAs in newt lens regeneration: specific control of proliferation and evidence for mirna networking. PLoS One 5, e12058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tsonis PA, Call MK, Grogg MW, Sartor MA, Taylor RR, Forge A, Fyffe R, Goldenberg R, Cowper-Sal-lari R, Tomlinson CR (2007) MicroRNAs and regeneration: let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochem Biophys Res Commun 362:940–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thatcher EJ, Paydar I, Anderson KK, Patton JG (2008) Regulation of zebrafish fin regeneration by microRNAs. Proc Natl Acad Sci U S A 105:18384–18389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yin VP, Lepilina A, Smith A, Poss KD (2012) Regulation of zebrafish heart regeneration by miR-133. Dev Biol 365:319–327. doi:10.1016/j.ydbio.2012.02.018

    Google Scholar 

  113. Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorava TI, Otsuka S, Sabaawy HE, Hart RP, Schachner M (2011) MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 33:1587–1597. doi:10.1111/j.1460-9568-2011-x

  114. Hutchins ED, Eckalbar WL, Wolter JM, Mangone M, Kusumi K (2016) Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis. BMC Genomics 17(1):339–350. doi:10.1186/s12864-016-2640-3

Download references

Acknowledgments

We thank Joel Robertson for his photograph of the green anole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenro Kusumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hutchins, E.D., Wilson-Rawls, J., Kusumi, K. (2016). Regeneration: Lessons from the Lizard. In: Wilson-Rawls, J., Kusumi, K. (eds) Innovations in Molecular Mechanisms and Tissue Engineering. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-44996-8_2

Download citation

Publish with us

Policies and ethics