Skip to main content

Identification and Functional Annotation of LncRNAs in Human Disease

  • Chapter
  • First Online:

Part of the book series: Health Information Science ((HIS))

Abstract

Accumulated evidence suggests that long noncoding RNAs (lncRNAS) play a key role in most of the biological processes. By the advance of sequencing technology, more and more lncRNAs are identified. However, only a few has known functions. It is still a challenge to annotate the functions of lncRNAs for both bioinformaticians and biologists. In this chapter, we gave a comprehensive review of the current bioinformatics methods to identify lncRNAs and annotate their functions in mammals. The identification of lncRNAs was mainly based on the technologies of microarray and RNA-seq. While for the functional annotations of lncRNAs, a method based on the co-expression network of both coding and noncoding genes was illustrated. We also reviewed several ways to analyze the interactions between lncRNAs and targets such as miRNAs and protein-coding genes. An example of identifying and annotating human lncRNAs was given to illustrate the whole process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.A. Erdmann, M. Szymanski, A. Hochberg, N. Groot, J. Barciszewski, Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res. 28, 197–200 (2000)

    Article  Google Scholar 

  2. T. Ota, Y. Suzuki, T. Nishikawa, T. Otsuki, T. Sugiyama et al., Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 36, 40–45 (2004)

    Article  Google Scholar 

  3. Y. Okazaki, M. Furuno, T. Kasukawa, J. Adachi, H. Bono et al., Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002)

    Article  Google Scholar 

  4. M.A. Hassan, M.B. Melo, B. Haas, K.D. Jensen, J.P. Saeij, De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genom. 13, 696 (2012)

    Article  Google Scholar 

  5. M. Guttman, M. Garber, J.Z. Levin, J. Donaghey, J. Robinson et al., Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010)

    Article  Google Scholar 

  6. J.W. Nam, D.P. Bartel, Long noncoding RNAs in C. elegans. Genome Res. 22, 2529–2540 (2012)

    Article  Google Scholar 

  7. J.E. Wilusz, H. Sunwoo, D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009)

    Article  Google Scholar 

  8. R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010)

    Article  Google Scholar 

  9. T.R. Mercer, M.E. Dinger, J.S. Mattick, Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009)

    Article  Google Scholar 

  10. H.T. Zheng, D.B. Shi, Y.W. Wang, X.X. Li, Y. Xu et al., High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 7, 3174–3181 (2014)

    Google Scholar 

  11. M. Sun, F.Y. Jin, R. Xia, R. Kong, J.H. Li et al., Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 14, 319 (2014)

    Article  Google Scholar 

  12. Q. Liao, C. Liu, X. Yuan, S. Kang, R. Miao et al., Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res. 39, 3864–3878 (2011)

    Article  Google Scholar 

  13. Q. Wang, Y.G. Wen, D.P. Li, J. Xia, C.Z. Zhou et al., Upregulated INHBA expression is associated with poor survival in gastric cancer. Med. Oncol. 29, 77–83 (2012)

    Article  Google Scholar 

  14. L. Sun, Z. Zhang, T.L. Bailey, A.C. Perkins, M.R. Tallack et al., Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinform. 13, 331 (2012)

    Article  Google Scholar 

  15. S. Ren, Z. Peng, J.H. Mao, Y. Yu, C. Yin et al., RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 22, 806–821 (2012)

    Article  Google Scholar 

  16. C. Trapnell, L. Pachter, S.L. Salzberg, TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009)

    Article  Google Scholar 

  17. C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan et al., Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010)

    Article  Google Scholar 

  18. Q. Liao, H. Xiao, D. Bu, C. Xie, R. Miao et al., ncFANs: a web server for functional annotation of long non-coding RNAs. Nucleic Acids Res. 39, W118–W124 (2011)

    Article  Google Scholar 

  19. J.H. Yang, J.H. Li, S. Jiang, H. Zhou, L.H. Qu, ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 41, D177–D187 (2013)

    Article  Google Scholar 

  20. S.W. Chi, J.B. Zang, A. Mele, R.B. Darnell, Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009)

    Google Scholar 

  21. L. Juan, G. Wang, M. Radovich, B.P. Schneider, S.E. Clare et al., Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med. Genomics 6(Suppl 1), S7 (2013)

    Article  Google Scholar 

  22. X.H. Liu, M. Sun, F.Q. Nie, Y.B. Ge, E.B. Zhang et al., Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol. Cancer 13, 92 (2014)

    Article  Google Scholar 

  23. M. Cesana, D. Cacchiarelli, I. Legnini, T. Santini, O. Sthandier et al., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011)

    Article  Google Scholar 

  24. J.H. Li, S. Liu, H. Zhou, L.H. Qu, J.H. Yang, starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)

    Article  Google Scholar 

  25. S. Das, S. Ghosal, R. Sen, J. Chakrabarti, lnCeDB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS ONE 9, e98965 (2014)

    Article  Google Scholar 

  26. J. Wang, L. Su, X. Chen, P. Li, Q. Cai et al., MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed. Pharmacother. 68, 557–564 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liao, Q., Bu, D., Sun, L., Luo, H., Zhao, Y. (2017). Identification and Functional Annotation of LncRNAs in Human Disease. In: Xu, D., Wang, M., Zhou, F., Cai, Y. (eds) Health Informatics Data Analysis. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-44981-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44981-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44979-1

  • Online ISBN: 978-3-319-44981-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics