Skip to main content

The Retinal Processing of Photoreceptor Signals

  • Chapter
  • First Online:

Part of the book series: Springer Series in Vision Research ((SSVR,volume 5))

Abstract

Color vision is the ability to perceive differences in the wavelength content of a light source, a process which starts with absorption of photons of different wavelengths and energies by the photopigments. In this chapter, the photopigments and the efficiency with which light of different wavelengths are absorbed by a photopigment are discussed. In addition, the translation of a photoisomerization to a photoreceptor excitation is considered as well as the signal transmission from the photoreceptors to post-receptoral cells and the post-receptoral processing of this signal in the retina. A large part of the chapter provides an overview of recent evidence that retinal processes in the major retino-geniculate pathways that are relevant for luminance and color vision, can be studied in the intact visual system by electroretinography (ERG), thus providing the possibility of direct study of human retinal physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3. doi:10.1126/science.1067262.

    Article  CAS  PubMed  Google Scholar 

  2. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70. doi:10.1126/science.1069609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433(7027):749–54. doi:10.1038/nature03387.

    Article  CAS  PubMed  Google Scholar 

  4. Brown TM, Gias C, Hatori M, Keding SR, Semo M, Coffey PJ, et al. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol. 2010;8(12):e1000558. doi:10.1371/journal.pbio.1000558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Guler AD, et al. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron. 2010;66(3):417–28. doi:10.1016/j.neuron.2010.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen AE, Storchi R, Martial FP, Petersen RS, Montemurro MA, Brown TM, et al. Melanopsin-driven light adaptation in mouse vision. Curr Biol. 2014;24(21):2481–90. doi:10.1016/j.cub.2014.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron. 2010;67(1):49–60. doi:10.1016/j.neuron.2010.05.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naka KI, Rushton WA. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol (London). 1966;185:536–55.

    Article  CAS  Google Scholar 

  9. Smith VC, Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 1975;15:161–71.

    Article  CAS  PubMed  Google Scholar 

  10. DeMarco P, Pokorny J, Smith VC. Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. J Opt Soc Am A. 1992;9(9):1465–76.

    Article  CAS  PubMed  Google Scholar 

  11. Stockman A, MacLeod DIA, Johnson NE. Spectral sensitivities of the human cones. J Opt Soc Am A. 1993;10(12):2491–521.

    Article  CAS  Google Scholar 

  12. Stockman A, Sharpe LT. Cone spectral sensitivities and color matching. In: Gegenfurtner K, Sharpe LT, editors. Color vision: from genes to perception. Cambridge: Cambridge University Press; 1999. p. 53–88.

    Google Scholar 

  13. Sharpe LT, Stockman A, Jägle H, Knau H, Klausen G, Reitner A, et al. Red, green and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities. J Neurosci. 1998;18:10053–69.

    CAS  PubMed  Google Scholar 

  14. Stockman A, Sharpe LT, Fach C. The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Res. 1999;39(17):2901–27.

    Article  CAS  PubMed  Google Scholar 

  15. Wyszecki G, Stiles W. Color science: concepts and methods, quantitative data and formulas. New York: Wiley; 1982.

    Google Scholar 

  16. Stiles WS. Increment thresholds and the mechanisms of colour vision. Doc Ophthalmol. 1949;3:138–63.

    Article  CAS  PubMed  Google Scholar 

  17. Stiles WS. Color vision: the approach through increment threshold sensitivity. Proc Natl Acad Sci U S A. 1959;45:100–14.

    Article  PubMed Central  Google Scholar 

  18. Donner KO, Rushton WAH. Retinal stimulation by light substitution. J Physiol. 1959;149:288–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Estévez O, Spekreijse H. A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. Vision Res. 1974;14:823–30.

    Article  PubMed  Google Scholar 

  20. Estévez O, Spekreijse H. The “silent substitution” method in visual research. Vision Res. 1982;22:681–91.

    Article  PubMed  Google Scholar 

  21. Kremers J. The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina. Prog Retin Eye Res. 2003;22:579–605.

    Article  PubMed  Google Scholar 

  22. Shapiro AG, Pokorny J, Smith VC. Cone-rod receptor spaces with illustrations that use the CRT phosphor and light-emitting-diode spectra. J Opt Soc Am A. 1996;13:2319–28.

    Article  CAS  Google Scholar 

  23. Cao D, Nicandro N, Barrionuevo PA. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans. J Vis. 2015;15(1):15.1.27. doi:10.1167/15.1.27.

    Article  PubMed  Google Scholar 

  24. Huchzermeyer C, Schlomberg J, Welge-Lussen U, Berendschot TT, Pokorny J, Kremers J. Macular pigment optical density measured by heterochromatic modulation photometry. PLoS One. 2014;9(10):e110521. doi:10.1371/journal.pone.0110521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bone RA, Landrum JT, Cains A. Optical density spectra of the macular pigment in vivo and in vitro. Vision Res. 1992;32(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  26. Kremers J, Usui T, Scholl HPN, Sharpe LT. Cone signal contributions to electroretinograms in dichromats and trichromats. Invest Ophthalmol Vis Sci. 1999;40:920–30.

    CAS  PubMed  Google Scholar 

  27. Usui T, Kremers J, Sharpe LT, Zrenner E. Flicker cone electroretinogram in dichromats and trichromats. Vision Res. 1998;38(21):3391–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kremers J, Stepien MW, Scholl HPN, Saito CA. Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics. J Vis. 2003;3:146–60.

    Article  PubMed  Google Scholar 

  29. Kremers J, Parry NR, Panorgias A, Murray IJ. The influence of retinal illuminance on L- and M-cone driven electroretinograms. Vis Neurosci. 2011;28:129–35. doi:10.1017/S0952523810000556. S0952523810000556 [pii].

    Article  PubMed  Google Scholar 

  30. Park JC, Cao D, Collison FT, Fishman GA, McAnany JJ. Rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram. Doc Ophthalmol. 2015;130(2):111–9. doi:10.1007/s10633-015-9480-3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hecht S, Haig C, Chase AM. The influence of light adaptation on subsequent dark adaptation of the eye. J Gen Physiol. 1937;20(6):831–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silveira LCL, Grünert U, Kremers J, Lee BB, Martin PR. Comparative anatomy and physiology of the primate retina. In: Kremers J, editor. The primate visual system; a comparative approach. Chichester: Wiley; 2005. p. 127–60.

    Google Scholar 

  33. Polyak SL. The retina. Chicago: University of Chicago Press; 1941.

    Google Scholar 

  34. Boycott BB, Dowling JE. Organization of the primate retina: light microscopy. Philos Trans R Soc Lond B. 1969;255:109–84.

    Article  Google Scholar 

  35. Boycott BB, Wässle H. Morphological classification of bipolar cells of the primate retina. Eur J Neurosci. 1991;3:1069–88.

    Article  PubMed  Google Scholar 

  36. Silveira LC, Perry VH. The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience. 1991;40(1):217–37.

    Article  CAS  PubMed  Google Scholar 

  37. Röhrenbeck J, Wässle H, Boycott BB. Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium binding proteins. Eur J Neurosci. 1989;1:407–20.

    Article  PubMed  Google Scholar 

  38. Martin PR, Grünert U. Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. J Comp Neurol. 1992;323(2):269–87. doi:10.1002/cne.903230210.

    Article  CAS  PubMed  Google Scholar 

  39. Kouyama N, Marshak DW. Bipolar cells specific for blue cones in the macaque retina. J Neurosci. 1992;12:1233–52.

    CAS  PubMed  Google Scholar 

  40. Grünert U, Greferath U, Boycott BB, Wässle H. Parasol (Pα) ganglion-cells of the primate fovea: immunocytochemical staining with antibodies against GABA A-receptors. Vision Res. 1993;33(1):1–14.

    Article  PubMed  Google Scholar 

  41. Wässle H, Grünert U, Martin PR, Boycott BB. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res. 1994;34:561–79.

    Article  PubMed  Google Scholar 

  42. Watanabe M, Rodieck RW. Parasol and midget ganglion cells of the primate retina. J Comp Neurol. 1989;289:434–54.

    Article  CAS  PubMed  Google Scholar 

  43. Dacey DM, Petersen MR. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci U S A. 1992;89:9666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dacey DM, Lee BB. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature. 1994;367:731–5.

    Article  CAS  PubMed  Google Scholar 

  45. Dacey DM, Lee BB, Stafford DM, Smith VC, Pokorny J. Horizontal cells of the primate retina: cone specificity without cone opponency. Science. 1996;271:656–8.

    Article  CAS  PubMed  Google Scholar 

  46. Dacey DM, Peterson BB, Robinson FR, Gamlin PD. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron. 2003;37(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  47. Kolb H, Mariani A, Gallego A. A second type of horizontal cell in the monkey retina. J Comp Neurol. 1980;189:31–44.

    Article  CAS  PubMed  Google Scholar 

  48. Kolb H, Linberg K, Fisher SK. Neurons of the human retina: a Golgi study. J Comp Neurol. 1992;318:147–87.

    Article  CAS  PubMed  Google Scholar 

  49. Kolb H, Fernandez E, Schouten J, Ahnelt P, Linberg KA, Fisher SK. Are there three types of horizontal cell in the human retina? J Comp Neurol. 1994;343:370–86.

    Article  CAS  PubMed  Google Scholar 

  50. Ahnelt PK, Kolb H. Horizontal cells and cone photoreceptors in human retina: a Golgi-electron microscopic study of spectral connectivity. J Comp Neurol. 1994;343:406–27.

    Article  CAS  PubMed  Google Scholar 

  51. Boycott BB, Kolb H. The horizontal cells of the rhesus monkey retina. J Comp Neurol. 1973;148:91–114.

    Article  CAS  PubMed  Google Scholar 

  52. Boycott BB, Hopkins JM, Sperling HG. Cone connections of the horizontal cells of the rhesus monkey’s retina. Proc R Soc Lond B. 1987;229:345–79.

    Article  CAS  PubMed  Google Scholar 

  53. Ahnelt P, Kolb H. Horizontal cells and cone photoreceptors in primate retina: a Golgi-light microscopic study of spectral connectivity. J Comp Neurol. 1994;343(3):387–405. doi:10.1002/cne.903430305.

    Article  CAS  PubMed  Google Scholar 

  54. Goodchild AK, Chan TL, Grünert U. Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis Neurosci. 1996;13:833–45.

    Article  CAS  PubMed  Google Scholar 

  55. dos Reis JW, de Carvalho WA, Saito CA, Silveira LC. Morphology of horizontal cells in the retina of the capuchin monkey, Cebus apella: how many horizontal cell classes are found in dichromatic primates? J Comp Neurol. 2002;443(2):105–23.

    Article  PubMed  Google Scholar 

  56. Dos Santos SN, Dos Reis JWL, da Silva-Filho M, Kremers J, Silveira LCL. Horizontal cell morphology in nocturnal and diurnal primates: a comparison between owl-monkey (Aotus) and capuchin monkey (Cebus). Vis Neurosci. 2005;22:405–15.

    Article  PubMed  Google Scholar 

  57. Peichl L. Morphology of interneurons: horizontal cells. In: Dartt DA, editor. Encyclopedia of the eye. Oxford: Academic; 2010. p. 74–82.

    Chapter  Google Scholar 

  58. Dacheux RF, Raviola E. Horizontal cells in the retina of the rabbit. J Neurosci. 1982;2:1486–93.

    CAS  PubMed  Google Scholar 

  59. Bloomfield SA, Miller RF. A physiological and morphological study of the horizontal cell types of the rabbit retina. J Comp Neurol. 1982;208:288–303.

    Article  CAS  PubMed  Google Scholar 

  60. Dorgau B, Herrling R, Schultz K, Greb H, Segelken J, Stroh S, et al. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. J Comp Neurol. 2015. doi:10.1002/cne.23779.

    PubMed  Google Scholar 

  61. Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res. 2012;31(5):407–41. doi:10.1016/j.preteyeres.2012.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chan TL, Goodchild AK, Martin PR. The morphology and distribution of horizontal cells in the retina of a New World monkey, the marmoset Callithrix jacchus: a comparison with macaque monkey. Vis Neurosci. 1997;14:125–40.

    Article  CAS  PubMed  Google Scholar 

  63. Chan TL, Grunert U. Horizontal cell connections with short wavelength-sensitive cones in the retina: a comparison between New World and Old World primates. J Comp Neurol. 1998;393(2):196–209.

    Article  CAS  PubMed  Google Scholar 

  64. Svaetichin G, MacNichol EF. Retinal mechanisms for chromatic and achromatic vision. Ann N Y Acad Sci. 1958;74:385–404.

    Article  Google Scholar 

  65. Ammermüller J, Kolb H. Functional architecture of the turtle retina. Prog Retin Eye Res. 1996;15:393–433.

    Article  Google Scholar 

  66. Kolb H, Boycott BB, Dowling JE. A second type of midget bipolar cell in the primate retina. Philos Trans R Soc Lond B. 1969;255:177–80.

    Google Scholar 

  67. Kolb H. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos Trans R Soc Lond B. 1970;258:261–83.

    Article  CAS  Google Scholar 

  68. Mariani AP. Giant bistratified bipolar cells in monkey retina. Anat Rec. 1983;206:215–20.

    Article  Google Scholar 

  69. Mariani AP. Bipolar cells in monkey retina selective for the cone likely to be blue-sensitive. Nature. 1984;308:184–6.

    Article  CAS  PubMed  Google Scholar 

  70. Chan TL, Martin PR, Clunas N, Grunert U. Bipolar cell diversity in the primate retina: morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. J Comp Neurol. 2001;437(2):219–39.

    Article  CAS  PubMed  Google Scholar 

  71. Grünert U, Martin PR, Wassle H. Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J Comp Neurol. 1994;348(4):607–27. doi:10.1002/cne.903480410.

    Article  PubMed  Google Scholar 

  72. Weltzien F, Percival KA, Martin PR, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523(2):313–34. doi:10.1002/cne.23683.

    Article  CAS  PubMed  Google Scholar 

  73. Chan TL, Martin PR, Grunert U. Immunocytochemical identification and analysis of the diffuse bipolar cell type DB6 in macaque monkey retina. Eur J Neurosci. 2001;13(4):829–32.

    Article  CAS  PubMed  Google Scholar 

  74. Silveira LCL, Lee BB, Yamada ES, Kremers J, Hunt DM. Post-receptoral mechanisms of colour vision in new world primates. Vision Res. 1998;38(21):3329–37.

    Article  CAS  PubMed  Google Scholar 

  75. Lameirao SV, Hamassaki DE, Rodrigues AR, DE Lima SM, Finlay BL, Silveira LC. Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): characterization and distribution. Vis Neurosci. 2009;26(4):389–96. doi:10.1017/S0952523809990186.

    Article  PubMed  Google Scholar 

  76. Martin PR, Lee BB, White AJ, Solomon SG, Ruttiger L. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature. 2001;410(6831):933–6. doi:10.1038/35073587.

    Article  CAS  PubMed  Google Scholar 

  77. Rodieck RW. The primate retina. Comparative primate biology. Neuroscience. 1988;4:203–78.

    Google Scholar 

  78. Joo HR, Peterson BB, Haun TJ, Dacey DM. Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections. Vis Neurosci. 2011;28(1):29–37. doi:10.1017/S0952523810000374.

    Article  PubMed  Google Scholar 

  79. Haverkamp S, Grünert U, Wassle H. The cone pedicle, a complex synapse in the retina. Neuron. 2000;27(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  80. Puthussery T, Venkataramani S, Gayet-Primo J, Smith RG, Taylor WR. NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina. J Neurosci. 2013;33(41):16045–59. doi:10.1523/JNEUROSCI.1249-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puthussery T, Percival KA, Venkataramani S, Gayet-Primo J, Grünert U, Taylor WR. Kainate receptors mediate synaptic input to transient and sustained OFF visual pathways in primate retina. J Neurosci. 2014;34(22):7611–21. doi:10.1523/JNEUROSCI.4855-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Puthussery T, Gayet-Primo J, Taylor WR, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519(18):3640–56. doi:10.1002/cne.22756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lee SC, Jusuf PR, Grunert U. S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina. J Comp Neurol. 2004;474(3):353–63. doi:10.1002/cne.20139.

    Article  PubMed  Google Scholar 

  84. Lee SC, Grünert U. Connections of diffuse bipolar cells in primate retina are biased against S-cones. J Comp Neurol. 2007;502(1):126–40. doi:10.1002/cne.21284.

    Article  CAS  PubMed  Google Scholar 

  85. Hartline HK. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol. 1938;121:400–15.

    Google Scholar 

  86. Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953;16:37–68.

    CAS  PubMed  Google Scholar 

  87. Nakanishi S. Second-order neurones and receptor mechanisms in visual- and olfactory-information processing. Trends Neurosci. 1995;18(8):359–64.

    Article  CAS  PubMed  Google Scholar 

  88. Slaughter MM, Miller RF. An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science. 1983;219(4589):1230–2.

    Article  CAS  PubMed  Google Scholar 

  89. Slaughter MM, Miller RF. 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981;211(4478):182–5.

    Article  CAS  PubMed  Google Scholar 

  90. Lee BB, Martin PR, Valberg A. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J Physiol. 1988;404:323–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaiser PK, Lee BB, Martin PR, Valberg A. The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. J Physiol. 1990;422:153–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kremers J, Lee BB, Kaiser PK. Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic modulation. J Opt Soc Am A. 1992;9:1477–85.

    Article  CAS  PubMed  Google Scholar 

  93. Maunsell JHR, Nealey TA, DePriest DD. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci. 1990;10(10):3323–34.

    CAS  PubMed  Google Scholar 

  94. Lee BB, Wehrhahn C, Westheimer G, Kremers J. Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements. J Neurosci. 1993;13(3):1001–9.

    CAS  PubMed  Google Scholar 

  95. Lee BB, Wehrhahn C, Westheimer G, Kremers J. The spatial precision of macaque ganglion cell responses in relation to Vernier acuity of human observers. Vision Res. 1995;35(19):2743–58.

    Article  CAS  PubMed  Google Scholar 

  96. Ruttiger L, Lee B, Sun H. Transient cells can be neurometrically sustained: the positional accuracy or retinal signals to moving targets. J Vis. 2002;2(3):232–42. doi:10.1167/2.3.3.

    Article  PubMed  Google Scholar 

  97. Lee BB, Martin PR, Valberg A, Kremers J. Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation. J Opt Soc Am A. 1993;10:1403–12.

    Article  CAS  PubMed  Google Scholar 

  98. Lee BB, Kremers J, Yeh T. Receptive fields of primate retinal cells studied with a novel technique. Vis Neurosci. 1998;15:161–75.

    Article  CAS  PubMed  Google Scholar 

  99. Martin PR, Blessing EM, Buzas P, Szmajda BA, Forte JD. Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys. J Physiol. 2011;589(Pt 11):2795–812. doi:10.1113/jphysiol.2010.194076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987;7(11):3416–68.

    CAS  PubMed  Google Scholar 

  101. Livingstone MS, Hubel DH. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240:740–9.

    Article  CAS  PubMed  Google Scholar 

  102. Martin PR. Colour processing in the primate retina: recent progress. J Phsyiol (London). 1998;513(3):631–8.

    Article  CAS  Google Scholar 

  103. Wiesel TN, Hubel DH. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966;29:1115–56.

    CAS  PubMed  Google Scholar 

  104. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12. doi:10.1007/s10633-014-9473-7.

    Article  PubMed  Google Scholar 

  105. Frishman LJ. Origins of the electroretinogram. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. Cambridge, London: The MIT Press; 2006. p. 139–83.

    Google Scholar 

  106. Sustar M, Hawlina M, Brecelj J. ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics. Doc Ophthalmol. 2006;113:43–52.

    Article  PubMed  Google Scholar 

  107. Pangeni G, Lammer R, Tornow RP, Horn FK, Kremers J. On- and off-response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma patients. Doc Ophthalmol. 2012. doi:10.1007/s10633-012-9323-4.

    Google Scholar 

  108. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000;41(9):2797–810.

    CAS  PubMed  Google Scholar 

  109. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith Iii EL. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40(6):1124–36.

    CAS  PubMed  Google Scholar 

  110. Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42(2):514–22.

    CAS  PubMed  Google Scholar 

  111. Armington JC. The electroretinogram. New York: Academic; 1974.

    Google Scholar 

  112. Jacobs GH. The discovery of spectral opponency in visual systems and its impact on understanding the neurobiology of color vision. J Hist Neurosci. 2014;23(3):287–314. doi:10.1080/0964704X.2014.896662.

    Article  PubMed  Google Scholar 

  113. Riggs LA, Johnson EP, Schick AM. Electrical responses of the human eye to changes in wavelength of the stimulating light. J Opt Soc Am. 1966;56:1621–7.

    Article  Google Scholar 

  114. Riggs LA, Sternheim CE. Human retinal and occipital potentials evoked by changes of the wavelength of the stimulating light. J Opt Soc Am. 1969;59(5):635–40.

    Article  CAS  PubMed  Google Scholar 

  115. Sperling HG, Harwerth RS. Red-green cone interaction in the increment-threshold spectral sensitivity of primates. Science. 1971;172:180–4.

    Article  CAS  PubMed  Google Scholar 

  116. Harwerth RS, Sperling HG. Effects of intense visible radiation on the increment-threshold spectral sensitivity of the rhesus monkey eye. Vision Res. 1975;15:1193–204.

    Article  CAS  PubMed  Google Scholar 

  117. Mills SL, Sperling HG. Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline. Vis Neurosci. 1990;5:217–21.

    Article  CAS  PubMed  Google Scholar 

  118. Sperling HG, Mills SL. Red-green interactions in the spectral sensitivity of primates as derived from ERG and behavioral data. Vis Neurosci. 1991;7:75–86.

    Article  CAS  PubMed  Google Scholar 

  119. van Norren D, Baron WS. Increment spectral sensitivities of the primate late receptor potential and b-wave. Vision Res. 1977;17(7):807–10.

    Article  PubMed  Google Scholar 

  120. King-Smith PE, Carden D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J Opt Soc Am. 1976;66:709–17.

    Article  CAS  PubMed  Google Scholar 

  121. Bush RA, Sieving PA. Inner retinal contributions to the primate photopic fast flicker electroretinogram. J Opt Soc Am A. 1996;13(3):557–65.

    Article  CAS  Google Scholar 

  122. Armington JC. Chromatic and short term dark adaptation of the human electroretinogram. J Opt Soc Am. 1959;49:1169–75.

    Article  CAS  PubMed  Google Scholar 

  123. DeValois RL, Abramov I, Jacobs GH. Analysis of response patterns of LGN cells. J Opt Soc Am. 1966;56:966–77.

    Article  CAS  Google Scholar 

  124. Baron WS. Cone difference signal in foveal local electroretinogram of primate. Invest Ophthalmol Vis Sci. 1980;19(12):1442–8.

    CAS  PubMed  Google Scholar 

  125. Donovan WJ, Baron WS. Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate. J Opt Soc Am A. 1982;72(8):1014–20.

    Article  CAS  Google Scholar 

  126. Jacobs GH. Primate photopigments and primate color vision. Proc Natl Acad Sci U S A. 1996;93:577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jacobs GH, Deegan Ii JF. Spectral sensitivity of macaque monkeys measured with ERG flicker photometry. Vis Neurosci. 1997;14:921–8.

    Article  CAS  PubMed  Google Scholar 

  128. Jacobs GH, Deegan IJS, Moran JL. ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vision Res. 1996;36(16):2587–94.

    Article  CAS  PubMed  Google Scholar 

  129. Jacobs GH, Neitz J. Electrophysiological estimates of individual variation in the L/M cone ratio. In: Drum B, editor. Colour vision deficiencies XI. Dordretch: Kluwer; 1993. p. 107–12.

    Chapter  Google Scholar 

  130. Jacobs GH, Neitz J, Krogh K. Electroretinogram flicker photometry and its applications. J Opt Soc Am A. 1996;13(3):641–8.

    Article  CAS  Google Scholar 

  131. Neitz J, Jacobs GH. Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys. J Opt Soc Am A. 1984;1:1175–80.

    Article  CAS  PubMed  Google Scholar 

  132. Kremers J, Scholl HPN, Knau H, Berendschot TTJM, Usui T, Sharpe LT. L/M cone ratios in human trichromats assesed by psychophysics, electroretinograpy, and retinal densitometry. J Opt Soc Am. 2000;17:517–26.

    Article  CAS  Google Scholar 

  133. Brainard DH, Roorda A, Yamauchi Y, Calderone JB, Metha AB, Neitz M, et al. Functional consequences of the relative numbers of L and M cones. J Opt Soc Am A. 2000;17(3):607–14.

    Article  CAS  Google Scholar 

  134. Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. Organization of the human trichromatic cone mosaic. J Neurosci. 2005;25(42):9669–79.

    Article  CAS  PubMed  Google Scholar 

  135. Hagstrom SA, Neitz J, Neitz M. Ratio of M/L pigment gene expression decreases with retinal eccentricity. In: Cavonius CR, editor. Colour vision deficiencies XIII. Dordrecht: Kluwer; 1997. p. 59–65.

    Chapter  Google Scholar 

  136. Hagstrom SA, Neitz J, Neitz M. Variation in cone populations for red-green color vision examined by analysis of mRNA. Neuroreport. 1998;9:1963–7.

    Article  CAS  PubMed  Google Scholar 

  137. Hagstrom SA, Neitz M, Neitz J. Cone pigment gene expression in individual photoreceptors and the chromatic topography of the retina. J Opt Soc Am A Opt Image Sci Vis. 2000;17(3):527–37.

    Article  CAS  PubMed  Google Scholar 

  138. Kuchenbecker JA, Sahay M, Tait DM, Neitz M, Neitz J. Topography of the long- to middle-wavelength sensitive cone ratio in the human retina assessed with a wide-field color multifocal electroretinogram. Vis Neurosci. 2008;25(3):301–6.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jacob MM, Pangeni G, Gomes BD, Souza GS, Da Silva Filho M, Silveira LCL, et al. The spatial properties of L- and M-cone inputs to electroretinograms that reflect different types of post-receptoral processing. PLoS One. 2015;10(3):e0121218. doi:10.1371/journal.pone.0121218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. de Lange H. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. J Opt Soc Am. 1958;48:777–84.

    Article  Google Scholar 

  141. Kelly DH, Norren DV. Two-band model of heterochromatic flicker. J Opt Soc Am. 1977;67:1081–91.

    Article  CAS  PubMed  Google Scholar 

  142. Kremers J, Link B. Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways. J Vis. 2008;8(15/11):1–14.

    PubMed  Google Scholar 

  143. Kremers J, Pangeni G. Electroretinographic responses to photoreceptor specific sine wave modulation. J Opt Soc Am A. 2012;29(2):A309–16.

    Article  Google Scholar 

  144. Kommanapalli D, Murray IJ, Kremers J, Parry NR, McKeefry DJ. Temporal characteristics of L- and M-cone isolating steady-state electroretinograms. J Opt Soc Am A Opt Image Sci Vis. 2014;31(4):A113–20. doi:10.1364/JOSAA.31.00A113.

    Article  PubMed  Google Scholar 

  145. Kremers J, Rodrigues AR, Silveira LCL, da Silva-Filho M. Flicker ERGs representing chromaticity and luminance signals. Invest Ophthalmol Vis Sci. 2010;51:577–87.

    Article  PubMed  Google Scholar 

  146. Lee BB, Sun H, Valberg A. Segregation of chromatic and luminance signals using a novel grating stimulus. J Physiol. 2011;589(Pt 1):59–73. doi:10.1113/jphysiol.2010.188862. jphysiol.2010.188862 [pii].

    Article  CAS  PubMed  Google Scholar 

  147. Parry NR, Murray IJ, Panorgias A, McKeefry DJ, Lee BB, Kremers J. Simultaneous chromatic and luminance human electroretinogram responses. J Physiol. 2012;590:3141–54. doi:10.1113/jphysiol.2011.226951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kremers J, Pangeni G, Tsaousis KT, McKeefry D, Murray IJ, Parry NR. Incremental and decremental L- and M-cone driven ERG responses: II. Sawtooth stimulation. J Opt Soc Am A Opt Image Sci Vis. 2014;31(4):A170–8. doi:10.1364/JOSAA.31.00A170.

    Article  PubMed  Google Scholar 

  149. McKeefry D, Kremers J, Kommanapalli D, Challa NK, Murray IJ, Maguire J, et al. Incremental and decremental L- and M-cone-driven ERG responses: I. Square-wave pulse stimulation. J Opt Soc Am A Opt Image Sci Vis. 2014;31(4):A159–69. doi:10.1364/JOSAA.31.00A159.

    Article  PubMed  Google Scholar 

  150. Murray IJ, Kremers J, Parry NRA. L- and M-Cone isolating ergs: LED versus CRT stimulation. Vis Neurosci. 2008;25:327–31.

    Article  CAS  PubMed  Google Scholar 

  151. Yamaguchi S, Motulsky AG, Deeb SS. Visual pigment gene structure and expression in human retinae. Hum Mol Genet. 1997;6:981–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Luiz Carlos da Silva Silveira passed away on 10th July 2016. This work was supported by German Research Council (DFG) grants KR 1317/9-1, KR1317/9-2 and KR1317/13-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kremers Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kremers, J., Silveira, L.C.L., Parry, N.R.A., McKeefry, D.J. (2016). The Retinal Processing of Photoreceptor Signals. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_2

Download citation

Publish with us

Policies and ethics