Skip to main content

The Genetics of Color Vision and Congenital Color Deficiencies

  • Chapter
  • First Online:
Human Color Vision

Abstract

Primates are unique among mammals in possessing trichromacy. In Old World primates, it is based on three cone classes in the retina, each expressing a different class of visual pigment. These pigment classes are each orthologues of pigments present throughout the vertebrate kingdom, the short wavelength-sensitive (SWS1, SWS2, LWS and MWS) pigment and two representatives of the long wavelength-sensitive (LWS) pigment, L cone opsin and M cone opsin. The latter two pigments arose from a duplication of the LWS gene that occurred at the base of the Old World primate lineage to give an array of two closely adjacent opsin genes on the X chromosome. This close proximity and the extensive sequence identity of the L and M genes promotes mispairing of the genes and thereby underlies the high frequency of red-green color blindness seen in humans. The consequences of this mispairing are the loss of either the L or M gene to give full dichromacy, or the generation of hybrid genes to give anomalous trichromacy. Generally, red-green color blindness is not associated with loss of acuity, although this is present in a rare form of dichromacy called Bornholm eye disease where cone dysfunction and myopia is also present. Other forms of color blindness include the X-linked disorder of blue cone monochromatism where L and M cones are absent, the dominant disorder of tritanopia where S cone are severely reduced or absent, and the recessive disorder of achromatopsia where all cone classes may be absent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt DM, Peichl L. S cones: evolution, retinal distribution, development and spectral sensitivity. Vis Neurosci. 2014;31(2):115–38.

    Article  PubMed  Google Scholar 

  2. Hunt DM, Carvalho LS, Cowing JA, Davies WL. Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci. 2009;364(1531):2941–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunt DM, Dulai KS, Cowing JA, Julliot C, Mollon JD, Bowmaker JK, et al. Molecular evolution of trichromacy in primates. Vision Res. 1998;38(21):3299–306.

    Article  CAS  PubMed  Google Scholar 

  4. Ebrey T, Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001;20(1):49–94.

    Article  CAS  PubMed  Google Scholar 

  5. Miller JL, Picones A, Korenbrot JI. Differences in transduction between rod and cone photoreceptors: an exploration of the role of calcium homeostasis. Curr Opin Neurobiol. 1994;4(4):488–95.

    Article  CAS  PubMed  Google Scholar 

  6. Pugh Jr EN, Nikonov S, Lamb TD. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol. 1999;9(4):410–8.

    Article  CAS  PubMed  Google Scholar 

  7. Yau KW. Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Invest Ophthalmol Vis Sci. 1994;35(1):9–32.

    CAS  PubMed  Google Scholar 

  8. Baylor DA, Matthews G, Yau KW. Two components of electrical dark noise in toad retinal rod outer segments. J Physiol. 1980;309:591–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kefalov VJ, Estevez ME, Kono M, Goletz PW, Crouch RK, Cornwall MC, et al. Breaking the covalent bond—a pigment property that contributes to desensitization in cones. Neuron. 2005;46(6):879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Travis GH. DISCO! Dissociation of cone opsins: the fast and noisy life of cones explained. Neuron. 2005;46(6):840–2.

    Article  CAS  PubMed  Google Scholar 

  11. Underwood G. Reptilian retinas. Nature. 1951;167(4240):183–5.

    Article  CAS  PubMed  Google Scholar 

  12. Kleinschmidt J, Dowling JE. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J Gen Physiol. 1975;66(5):617–48.

    Article  CAS  PubMed  Google Scholar 

  13. Kojima D, Okano T, Fukada Y, Shichida Y, Yoshizawa T, Ebrey TG. Cone visual pigments are present in gecko rod cells. Proc Natl Acad Sci U S A. 1992;89(15):6841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hunt DM, Collin SP. The evolution of photoreceptors and visual photopigments in vertebrates. In: Hunt DM, Hankins MW, Collin SP, Marshall NJ, editors. Evolution of visual and non-visual pigments. New York: Springer; 2014. p. 163–218.

    Google Scholar 

  15. Frings S, Seifert R, Godde M, Kaupp UB. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron. 1995;15(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  16. Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem. 2009;334(1–2):157–68.

    PubMed  Google Scholar 

  17. Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet. 1996;14(4):461–4.

    Article  CAS  PubMed  Google Scholar 

  18. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL. Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci. 1999;19(14):5889–97.

    CAS  PubMed  Google Scholar 

  19. Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, et al. Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet. 1998;7(7):1179–84.

    Article  CAS  PubMed  Google Scholar 

  20. Payne AM, Morris AG, Downes SM, Johnson S, Bird AC, Moore AT, et al. Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet. 2001;38(9):611–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron. 1994;12(6):1345–52.

    Article  CAS  PubMed  Google Scholar 

  22. Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W. Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1–8) in pufferfish (Fugu rubripes). J Mol Evol. 2004;59(2):204–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, et al. Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem. 1999;274(10):6526–35.

    Article  CAS  PubMed  Google Scholar 

  24. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron. 1994;13(2):395–404.

    Article  CAS  PubMed  Google Scholar 

  25. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, et al. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem. 1995;270(42):25200–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hunt DM, Wilkie SE, Newbold R, Deery E, Warren MJ, Bhattacharya SS, et al. Dominant cone and cone-rod dystrophies: functional analysis of mutations in retGC1 and GCAP1. Novartis Found Symp. 2004;255:37–49. discussion 49–50, 177–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang L, Wheaton D, Bereta G, Zhang K, Palczewski K, Birch DG, et al. A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vision Res. 2008;48(23–24):2425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitiratschky VB, Behnen P, Kellner U, Heckenlively JR, Zrenner E, Jagle H, et al. Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase. Hum Mutat. 2009;30:E782–96.

    Article  PubMed  Google Scholar 

  29. Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, et al. Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology. 2005;112(8):1442–7.

    Article  PubMed  Google Scholar 

  30. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, et al. A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet. 1998;7(2):273–7.

    Article  CAS  PubMed  Google Scholar 

  31. Brannock MT, Weng K, Robinson PR. Rhodopsin’s carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro. Biochemistry. 1999;38(12):3770–7.

    Article  CAS  PubMed  Google Scholar 

  32. Palczewski K, Buczylko J, Lebioda L, Crabb JW, Polans AS. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin. J Biol Chem. 1993;268(8):6004–13.

    CAS  PubMed  Google Scholar 

  33. Zhao X, Haeseleer F, Fariss RN, Huang J, Baehr W, Milam AH, et al. Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Vis Neurosci. 1997;14(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  34. Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, et al. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol Vis. 1998;4:27.

    CAS  PubMed  Google Scholar 

  35. Tachibanaki S, Tsushima S, Kawamura S. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Proc Natl Acad Sci U S A. 2001;98(24):14044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Craft CM, Whitmore DH. The arrestin superfamily: cone arrestins are a fourth family. FEBS Lett. 1995;362(2):247–55.

    Article  CAS  PubMed  Google Scholar 

  37. Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AE. Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol. 2003;13(22):R864–5.

    Article  CAS  PubMed  Google Scholar 

  38. Davies WL, Cowing JA, Carvalho LS, Potter IC, Trezise AE, Hunt DM, et al. Functional characterisation and regulation of visual pigment gene expression in an anadromous lamprey. FASEB J. 2007;21:2713–24.

    Article  CAS  PubMed  Google Scholar 

  39. Shu DG, Morris SC, Han J, Zhang ZF, Yasui K, Janvier P, et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature. 2003;421(6922):526–9.

    Article  CAS  PubMed  Google Scholar 

  40. Xian-guang H, Aldridge RJ, Siveter DJ, Siveter DJ, Xiang-hong F. New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc Biol Sci. 2002;269(1503):1865–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry. 1990;29(41):9746–52.

    Article  CAS  PubMed  Google Scholar 

  42. Fasick JI, Applebury ML, Oprian DD. Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry. 2002;41(21):6860–5.

    Article  CAS  PubMed  Google Scholar 

  43. Davies WI, Collin SP, Hunt DM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol. 2012;21(13):3121–58.

    Article  CAS  PubMed  Google Scholar 

  44. Davies WL, Carvalho LS, Cowing JA, Beazley LD, Hunt DM, Arrese CA. Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol. 2007;17(5):R161–3.

    Article  CAS  PubMed  Google Scholar 

  45. Wakefield MJ, Anderson M, Chang E, Wei KJ, Kaul R, Graves JA, et al. Cone visual pigments of monotremes: filling the phylogenetic gap. Vis Neurosci. 2008;25(3):257–64.

    Article  PubMed  Google Scholar 

  46. Mollon JD. “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J Exp Biol. 1989;146:21–38.

    CAS  PubMed  Google Scholar 

  47. Osorio D, Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B Biol Sci. 1996;263(1370):593–9.

    Article  CAS  Google Scholar 

  48. Regan BC, Julliot C, Simmen B, Vienot F, Charles-Dominique P, Mollon JD. Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B Biol Sci. 2001;356(1407):229–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sumner P, Mollon JD. Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol. 2000;203(Pt 13):1963–86.

    CAS  PubMed  Google Scholar 

  50. Dominy NJ, Lucas PW. Ecological importance of trichromatic vision to primates. Nature. 2001;410(6826):363–6.

    Article  CAS  PubMed  Google Scholar 

  51. Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986;232(4747):193–202.

    Article  CAS  PubMed  Google Scholar 

  52. Dulai KS, von Dornum M, Mollon JD, Hunt DM. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res. 1999;9(7):629–38.

    CAS  PubMed  Google Scholar 

  53. Hanna MC, Platts JT, Kirkness EF. Identification of a gene within the tandem array of red and green color pigment genes. Genomics. 1997;43(3):384–6.

    Article  CAS  PubMed  Google Scholar 

  54. Jorgensen AL, Deeb SS, Motulsky AG. Molecular genetics of X chromosome-linked color vision among populations of African and Japanese ancestry: high frequency of a shortened red pigment gene among Afro-Americans. Proc Natl Acad Sci U S A. 1990;87(17):6512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Macke JP, Merbs SL, Zack DJ, Klaunberg B, Bennett J, et al. A locus control region adjacent to the human red and green visual pigment genes. Neuron. 1992;9(3):429–40.

    Article  CAS  PubMed  Google Scholar 

  56. Shaaban SA, Deeb SS. Functional analysis of the promoters of the human red and green visual pigment genes. Invest Ophthalmol Vis Sci. 1998;39(6):885–96.

    CAS  PubMed  Google Scholar 

  57. Winderickx J, Battisti L, Motulsky AG, Deeb SS. Selective expression of human X chromosome-linked green opsin genes. Proc Natl Acad Sci U S A. 1992;89(20):9710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smallwood PM, Wang Y, Nathans J. Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc Natl Acad Sci U S A. 2002;99(2):1008–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carroll J, Neitz J, Neitz M. Estimates of L:M cone ratio from ERG flicker photometry and genetics. J Vis. 2002;2(8):531–42.

    Article  PubMed  Google Scholar 

  60. Neitz M, Neitz J, Jacobs GH. Spectral tuning of pigments underlying red-green color vision. Science. 1991;252(5008):971–4.

    Article  CAS  PubMed  Google Scholar 

  61. Williams AJ, Hunt DM, Bowmaker JK, Mollon JD. The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. EMBO J. 1992;11(6):2039–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ibbotson RE, Hunt DM, Bowmaker JK, Mollon JD. Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc R Soc Lond B. 1992;247(1319):145–54.

    Article  CAS  Google Scholar 

  63. Asenjo AB, Rim J, Oprian DD. Molecular determinants of human red/green color discrimination. Neuron. 1994;12(5):1131–8.

    Article  CAS  PubMed  Google Scholar 

  64. Merbs SL, Nathans J. Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem Photobiol. 1993;58(5):706–10.

    Article  CAS  PubMed  Google Scholar 

  65. Sanocki E, Lindsey DT, Winderickx J, Teller DY, Deeb SS, Motulsky AG. Serine/alanine amino acid polymorphism of the L and M cone pigments: effects on Rayleigh matches among deuteranopes, protanopes and color normal observers. Vision Res. 1993;33(15):2139–52.

    Article  CAS  PubMed  Google Scholar 

  66. Hunt DM, Cowing JA, Wilkie SE, Parry J, Poopalasundaram S, Bowmaker JK. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochem Photobiol Sci. 2004;3:713–20.

    Article  CAS  PubMed  Google Scholar 

  67. Bowmaker JK, Astell S, Hunt DM, Mollon JD. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991;156:1–19.

    CAS  PubMed  Google Scholar 

  68. Hunt DM, Cowing JA, Patel R, Appukuttan B, Bowmaker JK, Mollon JD. Sequence and evolution of the blue cone pigment gene in Old and New World primates. Genomics. 1995;27(3):535–8.

    Article  CAS  PubMed  Google Scholar 

  69. Shi Y, Radlwimmer FB, Yokoyama S. Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A. 2001;98(20):11731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yokoyama S, Shi Y. Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett. 2000;486(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  71. Carvalho LS, Davies WL, Robinson PR, Hunt DM. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc Biol Sci. 2012;279(1727):387–93.

    Article  PubMed  Google Scholar 

  72. Cowing JA, Poopalasundaram S, Wilkie SE, Robinson PR, Bowmaker JK, Hunt DM. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochem J. 2002;367(Pt 1):129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parry JW, Poopalasundaram S, Bowmaker JK, Hunt DM. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Biochemistry. 2004;43(25):8014–20.

    Article  CAS  PubMed  Google Scholar 

  74. Yokoyama S, Takenaka N, Agnew DW, Shoshani J. Elephants and human color-blind deuteranopes have identical sets of visual pigments. Genetics. 2005;170(1):335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hunt DM, Carvalho LS, Cowing JA, Parry JW, Wilkie SE, Davies WL, et al. Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem Photobiol. 2007;83(2):303–10.

    Article  CAS  PubMed  Google Scholar 

  76. Starace DM, Knox BE. Cloning and expression of a Xenopus short wavelength cone pigment. Exp Eye Res. 1998;67(2):209–20.

    Article  CAS  PubMed  Google Scholar 

  77. Moritz GL, Lim NT-L, Neitz M, Peichl L, Dominy NJ. Expression and evolution of short wavelength sensitive opsins in colugos: a nocturnal lineage that informs debate on primate origins. Evol Biol. 2013;40:542–53.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Carvalho LS, Davies WL, Robinson PR, Hunt DM. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc Biol Sci. 2012;279(1727):387–93.

    Article  PubMed  Google Scholar 

  79. Hunt DM, Dulai KS, Bowmaker JK, Mollon JD. The chemistry of John Dalton’s color blindness. Science. 1995;267(5200):984–8.

    Article  CAS  PubMed  Google Scholar 

  80. Sharpe LT, Stockman A, Jagle H, Nathans J. Opsin genes, cone photopigments, color vision and color blindness. In: Gegenfurtner KR, Sharpe LT, editors. Color vision: from genes to perception. Cambridge: Cambridge University Press; 1999. p. 3–51.

    Google Scholar 

  81. Drummond-Borg M, Deeb SS, Motulsky AG. Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci U S A. 1989;86(3):983–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feil R, Aubourg P, Heilig R, Mandel JL. A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics. 1990;6(2):367–73.

    Article  CAS  PubMed  Google Scholar 

  83. Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. Molecular genetics of inherited variation in human color vision. Science. 1986;232(4747):203–10.

    Article  CAS  PubMed  Google Scholar 

  84. Neitz M, Neitz J. Molecular genetics of color vision and color vision defects. Arch Ophthalmol. 2000;118(5):691–700.

    Article  CAS  PubMed  Google Scholar 

  85. Simunovic MP. Colour vision deficiency. Eye (Lond). 2010;24(5):747–55.

    Article  CAS  Google Scholar 

  86. McMahon C, Neitz J, Neitz M. Evaluating the human X-chromosome pigment gene promoter sequences as predictors of L:M cone ratio variation. J Vis. 2004;4(3):203–8.

    Article  PubMed  Google Scholar 

  87. Hagstrom SA, Neitz M, Neitz J. Cone pigment gene expression in individual photoreceptors and the chromatic topography of the retina. J Opt Soc Am A Opt Image Sci Vis. 2000;17(3):527–37.

    Article  CAS  PubMed  Google Scholar 

  88. Neitz J, Neitz M. The genetics of normal and defective color vision. Vision Res. 2011. doi:10.1016/j.visres.2010.12.002.

    PubMed  Google Scholar 

  89. Balding DJ, Nichols RA, Hunt DM. Detecting gene conversion: primate visual pigment genes. Proc Biol Sci. 1992;249(1326):275–80.

    Article  CAS  PubMed  Google Scholar 

  90. Shyue SK, Li L, Chang BH, Li WH. Intronic gene conversion in the evolution of human X-linked color vision genes. Mol Biol Evol. 1994;11(3):548–51.

    CAS  PubMed  Google Scholar 

  91. Shyue SK, Hewett-Emmett D, Sperling HG, Hunt DM, Bowmaker JK, Mollon JD, et al. Adaptive evolution of color vision genes in higher primates. Science. 1995;269(5228):1265–7.

    Article  CAS  PubMed  Google Scholar 

  92. Zhao Z, Hewett-Emmett D, Li WH. Frequent gene conversion between human red and green opsin genes. J Mol Evol. 1998;46(4):494–6.

    Article  CAS  PubMed  Google Scholar 

  93. Verrelli BC, Lewis Jr CM, Stone AC, Perry GH. Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. Mol Biol Evol. 2008;25(12):2735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Onishi A, Koike S, Ida M, Schichida Y, Takemaka O, Hanazawa A, et al. Dichromaticsm in macaque monkeys. Nature. 1999;402(6758):139–40.

    CAS  PubMed  Google Scholar 

  95. Terao K, Mikami A, Saito A, Itoh S, Ogawa H, Takenaka O, et al. Identification of a protoanomalous chimpanzee by molecular genetic and electroretinogram analyses. Vis Res. 2005;45(10):1225–35.

    Article  PubMed  Google Scholar 

  96. Hiwatashi T, Mikami A, Katsumura T, Suryobroto B, Perwitasari-Farajallah D, Malaivijitnond S, et al. Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes. BMC Evol Biol. 2011;11:312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88(2):291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gouras P, MacKay CJ. Electroretinographic responses of the short-wavelength-sensitive cones. Invest Ophthalmol Vis Sci. 1990;31(7):1203–9.

    CAS  PubMed  Google Scholar 

  99. Nathans J, Davenport CM, Maumenee IH, Lewis RA, Hejtmancik JF, Litt M, et al. Molecular genetics of human blue cone monochromacy. Science. 1989;245(4920):831–8.

    Article  CAS  PubMed  Google Scholar 

  100. Michaelides M, Johnson S, Simunovic MP, Bradshaw K, Holder G, Mollon JD, et al. Blue cone monochromatism: a phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye. 2005;19:2–10.

    Article  CAS  PubMed  Google Scholar 

  101. Nathans J, Maumenee IH, Zrenner E, Sadowski B, Sharpe LT, Lewis RA, et al. Genetic heterogeneity among blue-cone monochromats. Am J Hum Genet. 1993;53(5):987–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gardner JC, Michaelides M, Holder GE, Kanuga N, Webb TR, Mollon JD, et al. Blue cone monochromacy: causative mutations and associated phenotypes. Mol Vis. 2009;15:876–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Carroll J, Baraas RC, Wagner-Schuman M, Rha J, Siebe CA, Sloan C, et al. Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin. Proc Natl Acad Sci U S A. 2009;106(49):20948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ayyagari R, Kakuk LE, Bingham EL, Szczesny JJ, Kemp J, Toda Y, et al. Spectrum of color gene deletions and phenotype in patients with blue cone monochromacy. Hum Genet. 2000;107(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  105. Ayyagari R, Kakuk LE, Coats CL, Bingham EL, Toda Y, Felius J, et al. Bilateral macular atrophy in blue cone monochromacy (BCM) with loss of the locus control region (LCR) and part of the red pigment gene. Mol Vis. 1999;5:13.

    CAS  PubMed  Google Scholar 

  106. Carroll J, Rossi EA, Porter J, Neitz J, Roorda A, Williams DR, et al. Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic. Vision Res. 2010;50(19):1989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ladekjaer-Mikkelsen AS, Rosenberg T, Jorgensen AL. A new mechanism in blue cone monochromatism. Hum Genet. 1996;98(4):403–8.

    Article  CAS  PubMed  Google Scholar 

  108. Fleischman JA, O’Donnell Jr FE. Congenital X-linked incomplete achromatopsia. Evidence for slow progression, carrier fundus findings, and possible genetic linkage with glucose-6-phosphate dehydrogenase locus. Arch Ophthalmol. 1981;99(3):468–72.

    Article  CAS  PubMed  Google Scholar 

  109. Wright WD. The characteristics of tritanopia. J Opt Soc Am. 1952;42(8):509–21.

    Article  CAS  PubMed  Google Scholar 

  110. Went LN, Pronk N. The genetics of tritan disturbances. Hum Genet. 1985;69(3):255–62.

    Article  CAS  PubMed  Google Scholar 

  111. Gunther KL, Neitz J, Neitz M. A novel mutation in the short-wavelength-sensitive cone pigment gene associated with a tritan color vision defect. Vis Neurosci. 2006;23:403–9.

    Google Scholar 

  112. Baraas RC, Hagen LA, Dees EW, Neitz M. Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities. Vision Res. 2012;73:1–9. doi:10.1016/j.visres.2012.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weitz CJ, Miyake Y, Shinzato K, Montag E, Zrenner E, Went LN, et al. Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin. Am J Hum Genet. 1992;50(3):498–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Weitz CJ, Went LN, Nathans J. Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment. Am J Hum Genet. 1992;51(2):444–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Baraas RC, Carroll J, Gunther KL, Chung M, Williams DR, Foster DH, et al. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. J Opt Soc Am A Opt Image Sci Vis. 2007;24(5):1438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. al-Maghtheh M, Gregory C, Inglehearn C, Hardcastle A, Bhattacharya S. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Hum Mutat. 1993;2(4):249–55.

    Article  CAS  PubMed  Google Scholar 

  117. Berson EL, Sandberg MA, Dryja TP. Autosomal dominant retinitis pigmentosa with rhodopsin, valine-345-methionine. Trans Am Ophthalmol Soc. 1991;89:117–28. discussion 28–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sung CH, Davenport CM, Nathans J. Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J Biol Chem. 1993;268(35):26645–9.

    CAS  PubMed  Google Scholar 

  119. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364–6.

    Article  CAS  PubMed  Google Scholar 

  120. Jacobson SG, Marmor MF, Kemp CM, Knighton RW. SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest Ophthalmol Vis Sci. 1990;31(5):827–38.

    CAS  PubMed  Google Scholar 

  121. Marmor MF, Jacobson SG, Foerster MH, Kellner U, Weleber RG. Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. Am J Ophthalmol. 1990;110(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  122. Marmor MF, Tan F, Sutter EE, Bearse Jr MA. Topography of cone electrophysiology in the enhanced S cone syndrome. Invest Ophthalmol Vis Sci. 1999;40(8):1866–73.

    CAS  PubMed  Google Scholar 

  123. Kobayashi M, Takezawa S, Hara K, Yu RT, Umesono Y, Agata K, et al. Identification of a photoreceptor cell-specific nuclear receptor. Proc Natl Acad Sci U S A. 1999;96(9):4814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Swaroop A, Xu JZ, Pawar H, Jackson A, Skolnick C, Agarwal N. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc Natl Acad Sci U S A. 1992;89(1):266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, et al. Nrl is required for rod photoreceptor development. Nat Genet. 2001;29(4):447–52.

    Article  CAS  PubMed  Google Scholar 

  126. Haider NB, Demarco P, Nystuen AM, Huang X, Smith RS, McCall MA, et al. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation. Vis Neurosci. 2006;23(6):917–29.

    Article  PubMed  Google Scholar 

  127. Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci. 2010;11(8):563–76.

    Article  CAS  PubMed  Google Scholar 

  128. Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet. 2001;27(1):94–8.

    Article  CAS  PubMed  Google Scholar 

  129. Weiss AH, Kelly JP, Bisset D, Deeb SS. Reduced L- and M- and increased S-cone functions in an infant with thyroid hormone resistance due to mutations in the THRbeta2 gene. Ophthalmic Genet. 2012;33(4):187–95.

    Article  CAS  PubMed  Google Scholar 

  130. Machado DS, Sabet A, Santiago LA, Sidhaye AR, Chiamolera MI, Ortiga-Carvalho TM, et al. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo. Proc Natl Acad Sci U S A. 2009;106(23):9441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kohl S, Hamel C. Clinical utility gene card for: achromatopsia—update 2013. Eur J Hum Genet. 2013;21(11).

    Google Scholar 

  132. Sundin OH, Yang JM, Li Y, Zhu D, Hurd JN, Mitchell TN, et al. Genetic basis of total colour blindness among the Pingelapese islanders. Nat Genet. 2000;25(3):289–93.

    Article  CAS  PubMed  Google Scholar 

  133. Roosing S, Thiadens AA, Hoyng CB, Klaver CC, den Hollander AI, Cremers FP. Causes and consequences of inherited cone disorders. Prog Retin Eye Res. 2014;42:1–26.

    Article  CAS  PubMed  Google Scholar 

  134. Kohl S, Marx T, Giddings I, Jagle H, Jacobson SG, Apfelstedt-Sylla E, et al. Total colour blindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet. 1998;19(3):257–9.

    Article  CAS  PubMed  Google Scholar 

  135. Kohl S, Baumann B, Broghammer M, Jagle H, Sieving P, Kellner U, et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet. 2000;9(14):2107–16.

    Article  CAS  PubMed  Google Scholar 

  136. Kohl S, Coppieters F, Meire F, Schaich S, Roosing S, Brennenstuhl C, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. Am J Hum Genet. 2012;91(3):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadala M, et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet. 2002;71(2):422–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aligianis IA, Forshew T, Johnson S, Michaelides M, Johnson CA, Trembath RC, et al. Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2). J Med Genet. 2002;39(9):656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thiadens AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet. 2009;85(2):240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thiadens AA, Slingerland NW, Roosing S, van Schooneveld MJ, van Lith-Verhoeven JJ, van Moll-Ramirez N, et al. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology. 2009;116(10):1984–9. e1.

    Article  PubMed  Google Scholar 

  141. Thiadens AA, Roosing S, Collin RW, van Moll-Ramirez N, van Lith-Verhoeven JJ, van Schooneveld MJ, et al. Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology. 2010;117(4):825–30. e1.

    Article  PubMed  Google Scholar 

  142. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jagle H, et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet. 2005;13(3):302–8.

    Article  CAS  PubMed  Google Scholar 

  143. Michaelides M, Aligianis IA, Holder GE, Simunovic M, Mollon JD, Maher ER, et al. Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the alpha-subunit of cone specific transducin (GNAT2). Br J Ophthalmol. 2003;87(11):1317–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ouechtati F, Merdassi A, Bouyacoub Y, Largueche L, Derouiche K, Ouragini H, et al. Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene. J Hum Genet. 2011;56(1):22–8.

    Article  PubMed  Google Scholar 

  145. Rosenberg T, Baumann B, Kohl S, Zrenner E, Jorgensen AL, Wissinger B. Variant phenotypes of incomplete achromatopsia in two cousins with GNAT2 gene mutations. Invest Ophthalmol Vis Sci. 2004;45(12):4256–62.

    Article  PubMed  Google Scholar 

  146. Pina AL, Baumert U, Loyer M, Koenekoop RK. A three base pair deletion encoding the amino acid (lysine-270) in the alpha-cone transducin gene. Mol Vis. 2004;10:265–71.

    CAS  PubMed  Google Scholar 

  147. Katagiri S, Hayashi T, Yoshitake K, Sergeev Y, Akahori M, Furuno M, et al. Congenital achromatopsia and macular atrophy caused by a novel recessive PDE6C mutation (p.E591K). Ophthalmic Genet. 2015;36(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  148. Grau T, Artemyev NO, Rosenberg T, Dollfus H, Haugen OH, Cumhur Sener E, et al. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia. Hum Mol Genet. 2011;20(4):719–30.

    Article  CAS  PubMed  Google Scholar 

  149. Kohl S, Jagle H, Wissinger B. Achromatopsia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  150. Huang L, Zhang Q, Li S, Guan L, Xiao X, Zhang J, et al. Exome sequencing of 47 Chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One. 2013;8(6):e65546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chang B, Grau T, Dangel S, Hurd R, Jurklies B, Sener EC, et al. A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proc Natl Acad Sci U S A. 2009;106(46):19581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Johnson S, Michaelides M, Aligianis IA, Ainsworth JR, Mollon JD, Maher ER, et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet. 2004;41(2):e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aboshiha J, Dubis AM, Carroll J, Hardcastle AJ, Michaelides M. The cone dysfunction syndromes. Br J Ophthalmol. 2016;100(1):115–21.

    Article  PubMed  Google Scholar 

  154. Wawrocka A, Kohl S, Baumann B, Walczak-Sztulpa J, Wicher K, Skorczyk-Werner A, et al. Five novel CNGB3 gene mutations in Polish patients with achromatopsia. Mol Vis. 2014;20:1732–9.

    PubMed  PubMed Central  Google Scholar 

  155. Corton M, Nishiguchi KM, Avila-Fernandez A, Nikopoulos K, Riveiro-Alvarez R, Tatu SD, et al. Exome sequencing of index patients with retinal dystrophies as a tool for molecular diagnosis. PLoS One. 2013;8(6):e65574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nishiguchi KM, Sandberg MA, Gorji N, Berson EL, Dryja TP. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat. 2005;25(3):248–58.

    Article  CAS  PubMed  Google Scholar 

  157. Zelinger L, Cideciyan AV, Kohl S, Schwartz SB, Rosenmann A, Eli D, et al. Genetics and disease expression in the CNGA3 form of achromatopsia: steps on the path to gene therapy. Ophthalmology. 2015;122:997–1007.

    Article  PubMed  Google Scholar 

  158. Michaelides M, Aligianis IA, Ainsworth JR, Good P, Mollon JD, Maher ER, et al. Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci. 2004;45(6):1975–82.

    Article  PubMed  Google Scholar 

  159. Matveev AV, Quiambao AB, Browning Fitzgerald J, Ding XQ. Native cone photoreceptor cyclic nucleotide-gated channel is a heterotetrameric complex comprising both CNGA3 and CNGB3: a study using the cone-dominant retina of Nrl−/− mice. J Neurochem. 2008;106(5):2042–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82(3):769–824.

    Article  CAS  PubMed  Google Scholar 

  161. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jagle H, et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet. 2005;13(3):302–8.

    Article  CAS  PubMed  Google Scholar 

  162. Wissinger B, Gamer D, Jagle H, Giorda R, Marx T, Mayer S, et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet. 2001;69(4):722–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zelinger L, Greenberg A, Kohl S, Banin E, Sharon D. An ancient autosomal haplotype bearing a rare achromatopsia-causing founder mutation is shared among Arab Muslims and Oriental Jews. Hum Genet. 2010;128(3):261–7.

    Article  PubMed  Google Scholar 

  164. Ahuja Y, Kohl S, Traboulsi EI. CNGA3 mutations in two United Arab Emirates families with achromatopsia. Mol Vis. 2008;14:1293–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ben Simon GJ, Abraham FA, Melamed S. Pingelapese achromatopsia: correlation between paradoxical pupillary response and clinical features. Br J Ophthalmol. 2004;88(2):223–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fahim AT, Khan NW, Zahid S, Schachar IH, Branham K, Kohl S, et al. Diagnostic fundus autofluorescence patterns in achromatopsia. Am J Ophthalmol. 2013;156(6):1211–9. e2.

    Article  PubMed  Google Scholar 

  167. Stockman A, Smithson HE, Michaelides M, Moore AT, Webster AR, Sharpe LT. Residual cone vision without alpha-transducin. J Vis. 2007;7(4):8.

    Article  PubMed  Google Scholar 

  168. Khan NW, Wissinger B, Kohl S, Sieving PA. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophthalmol Vis Sci. 2007;48(8):3864–71.

    Article  PubMed  Google Scholar 

  169. Moskowitz A, Hansen RM, Akula JD, Eklund SE, Fulton AB. Rod and rod-driven function in achromatopsia and blue cone monochromatism. Invest Ophthalmol Vis Sci. 2009;50(2):950–8.

    Article  PubMed  Google Scholar 

  170. Aboshiha J, Luong V, Cowing J, Dubis AM, Bainbridge JW, Ali RR, et al. Dark-adaptation functions in molecularly confirmed achromatopsia and the implications for assessment in retinal therapy trials. Invest Ophthalmol Vis Sci. 2014;55(10):6340–9.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Thomas MG, McLean RJ, Kohl S, Sheth V, Gottlob I. Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. Br J Ophthalmol. 2012;96(9):1232–6.

    Article  PubMed  Google Scholar 

  172. Aboshiha J, Dubis AM, Cowing J, Fahy RT, Sundaram V, Bainbridge JW, et al. A prospective longitudinal study of retinal structure and function in achromatopsia. Invest Ophthalmol Vis Sci. 2014;55(9):5733–43.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Thiadens AA, Somervuo V, van den Born LI, Roosing S, van Schooneveld MJ, Kuijpers RW, et al. Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(11):5952–7.

    Article  PubMed  Google Scholar 

  174. Ding XQ, Harry CS, Umino Y, Matveev AV, Fliesler SJ, Barlow RB. Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. Hum Mol Genet. 2009;18(24):4770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Trifunovic D, Dengler K, Michalakis S, Zrenner E, Wissinger B, Paquet-Durand F. cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J Comp Neurol. 2010;518(17):3604–17.

    Article  CAS  PubMed  Google Scholar 

  176. Biel M, Seeliger M, Pfeifer A, Kohler K, Gerstner A, Ludwig A, et al. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci U S A. 1999;96(13):7553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A, et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet. 2010;19(13):2581–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morris LM, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet. 2011;20(16):3161–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sundaram V, Wilde C, Aboshiha J, Cowing J, Han C, Langlo CS, et al. Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology. 2014;121(1):234–45.

    Article  PubMed  Google Scholar 

  180. Thomas MG, Gottlob I. Re: Sundaram et al.: Retinal structure and function in achromatopsia: implications for gene therapy (Ophthalmology 2014;121:234–45). Ophthalmology. 2014;121(9):e46–7.

    Article  PubMed  Google Scholar 

  181. Thiadens AA, Klaver CC. Re: Sundaram et al.: Retinal structure and function in achromatopsia: implications for gene therapy (Ophthalmology 2014;121:234–45). Ophthalmology. 2014;121(8):e40–1.

    Article  PubMed  Google Scholar 

  182. Carroll J, Choi SS, Williams DR. In vivo imaging of the photoreceptor mosaic of a rod monochromat. Vision Res. 2008;48(26):2564–8.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Thomas MG, Kumar A, Kohl S, Proudlock FA, Gottlob I. High-resolution in vivo imaging in achromatopsia. Ophthalmology. 2011;118(5):882–7.

    Article  PubMed  Google Scholar 

  184. Genead MA, Fishman GA, Rha J, Dubis AM, Bonci DM, Dubra A, et al. Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci. 2011;52(10):7298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dubis AM, Cooper RF, Aboshiha J, Langlo CS, Sundaram V, Liu B, et al. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Invest Ophthalmol Vis Sci. 2014;55(11):7303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Greenberg JP, Sherman J, Zweifel SA, Chen RW, Duncker T, Kohl S, et al. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmol. 2014;132(4):437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, et al. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci. 2014;55(7):4244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Yang P, Michaels KV, Courtney RJ, Wen Y, Greninger DA, Reznick L, et al. Retinal morphology of patients with achromatopsia during early childhood: implications for gene therapy. JAMA Ophthalmol. 2014;132(7):823–31.

    Article  CAS  PubMed  Google Scholar 

  189. Michaelides M, Holder GE, Bradshaw K, Hunt DM, Mollon JD, Moore AT. Oligocone trichromacy: a rare and unusual cone dysfunction syndrome. Br J Ophthalmol. 2004;88(4):497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Michaelides M, Rha J, Dees EW, Baraas RC, Wagner-Schuman ML, Mollon JD, et al. Integrity of the cone photoreceptor mosaic in Oligocone Trichromacy. Invest Ophthalmol Vis Sci. 2011;52(7):4757–64.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Andersen MK, Christoffersen NL, Sander B, Edmund C, Larsen M, Grau T, et al. Oligocone trichromacy: clinical and molecular genetic investigations. Invest Ophthalmol Vis Sci. 2010;51(1):89–95.

    Article  PubMed  Google Scholar 

  192. Vincent A, Wright T, Billingsley G, Westall C, Heon E. Oligocone trichromacy is part of the spectrum of CNGA3-related cone system disorders. Ophthalmic Genet. 2011;32(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  193. Jiang L, Baehr W. GCAP1 mutations associated with autosomal dominant cone dystrophy. Adv Exp Med Biol. 2010;664:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Olshevskaya EV, Calvert PD, Woodruff ML, Peshenko IV, Savchenko AB, Makino CL, et al. The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice. J Neurosci. 2004;24(27):6078–85.

    Article  CAS  PubMed  Google Scholar 

  195. Buch PK, Mihelec M, Cottrill P, Wilkie SE, Pearson RA, Durran Y, et al. Dominant cone-rod dystrophy: a mouse model generated by gene targeting of the GCAP1/guca1a gene. PLoS One. 2011;6(3):e18089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, et al. Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet. 2001;69(3):471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ramamurthy V, Tucker C, Wilkie SE, Daggett V, Hunt DM, Hurley JB. Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem. 2001;276(28):26218–29.

    Article  CAS  PubMed  Google Scholar 

  198. Wilkie SE, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, et al. Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet. 2000;9(20):3065–73.

    Article  CAS  PubMed  Google Scholar 

  199. Gregory-Evans K, Kelsell RE, Gregory-Evans CY, Downes SM, Fitzke FW, Holder GE, et al. Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase. Ophthalmology. 2000;107(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  200. Michaelides M, Johnson S, Bradshaw K, Holder GE, Simunovic MP, Mollon JD, et al. X-linked cone dysfunction syndrome with myopia and protanopia. Ophthalmology. 2005;112(8):1448–54.

    Article  PubMed  Google Scholar 

  201. Schwartz M, Haim M, Skarsholm D. X-linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq. Clin Genet. 1990;38(4):281–6.

    Article  CAS  PubMed  Google Scholar 

  202. Young TL, Deeb SS, Ronan SM, Dewan AT, Alvear AB, Scavello GS, et al. X-linked high myopia associated with cone dysfunction. Arch Ophthalmol. 2004;122(6):897–908.

    Article  PubMed  Google Scholar 

  203. Kazmi MA, Sakmar TP, Ostrer H. Mutation of a conserved cysteine in the X-linked cone opsins causes color vision deficiencies by disrupting protein folding and stability. Invest Ophthalmol Vis Sci. 1997;38(6):1074–81.

    CAS  PubMed  Google Scholar 

  204. McClements M, Davies WI, Michaelides M, Young T, Neitz M, Maclaren RE, et al. Variations in opsin coding sequences cause x-linked cone dysfunction syndrome with myopia and dichromacy. Invest Ophthalmol Vis Sci. 2013;54(2):1361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sharpe LT, Stockman A, Jagle H, Knau H, Klausen G, Reitner A, et al. Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. J Neurosci. 1998;18(23):10053–69.

    CAS  PubMed  Google Scholar 

  206. Ueyama H, Kuwayama S, Imai H, Oda S, Nishida Y, Tanabe S, et al. Analysis of L-cone/M-cone visual pigment gene arrays in Japanese males with protan color-vision deficiency. Vision Res. 2004;44(19):2241–52.

    Article  CAS  PubMed  Google Scholar 

  207. Carroll J, Neitz M, Hofer H, Neitz J, Williams DR. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci U S A. 2004;101(22):8461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ueyama H, Muraki-Oda S, Yamade S, Tanabe S, Yamashita T, Shichida Y, et al. Unique haplotype in exon 3 of cone opsin mRNA affects splicing of its precursor, leading to congenital color vision defect. Biochem Biophys Res Commun. 2012;424:152–7.

    Article  CAS  PubMed  Google Scholar 

  209. Gardner JC, Liew G, Quan YH, Ermetal B, Ueyama H, Davidson AE, et al. Three different cone opsin gene array mutational mechanisms with genotype-phenotype correlation and functional investigation of cone opsin variants. Hum Mutat. 2014;35(11):1354–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Carroll J, Dubra A, Gardner JC, Mizrahi-Meissonnier L, Cooper RF, Dubis AM, et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Invest Ophthalmol Vis Sci. 2012;53(13):8006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Malanson KM, Lem J. Rhodopsin-mediated retinitis pigmentosa. Prog Mol Biol Transl Sci. 2009;88:1–31.

    Article  CAS  PubMed  Google Scholar 

  212. McClements M, Davies WI, Michaelides M, Carroll J, Rha J, Mollon JD, et al. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Res. 2013;80:41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Gardner JC, Webb TR, Kanuga N, Robson AG, Holder GE, Stockman A, et al. X-linked cone dystrophy caused by mutation of the red and green cone opsins. Am J Hum Genet. 2010;87(1):26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wagner-Schuman M, Neitz J, Rha J, Williams DR, Neitz M, Carroll J. Color-deficient cone mosaics associated with Xq28 opsin mutations: a stop codon versus gene deletions. Vision Res. 2010;50(23):2396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Alexander JJ, Umino Y, Everhart D, Chang B, Min SH, Li Q, et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med. 2007;13(6):685–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Michalakis S, Muhlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, et al. Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther. 2010;18(12):2057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Hunt B.Sc., Ph.D., FRSB .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, D.M., Carvalho, L.S. (2016). The Genetics of Color Vision and Congenital Color Deficiencies. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_1

Download citation

Publish with us

Policies and ethics