Biocides and “Superbugs”

  • Aleardo Zaccheo
  • Eleonora Palmaccio
  • Morgan Venable
  • Isabella Locarnini-Sciaroni
  • Salvatore Parisi


Antibiotic resistance is one billion years old and “only holds clinical importance if it is related to the outcome of treatment associated with a pathogen.” Human applications lead to the transfers of resistance genes to pathogenic and agriculture microorganisms and contribute “to the maintenance and/or amplification of resistance gene reservoirs.” Antibiotic resistance is sometimes linked and selected by some sanitizing agents as well. Sanitizing agents are not applicable against mixed biofilms in all contexts, especially on edible food surfaces where they might not be effective or allowed by local regulations.


Biocides Superbugs Treadmill β-lactam β-lactamases Penicillin-binding proteins (PBB) Methicillin MRSA ESBL Mixed biofilms 


  1. 24.
    Beck R (2000) Chronology of microbiology in historical context. In: A chronology of microbiology in historical context. ASM Press, Washington, DC, pp 1–335. doi: 10.1128/9781555818081.ch1 CrossRefGoogle Scholar
  2. 32.
    Ford TE, Colwell RR (eds) (1996) A global decline in microbiological safety of water: a call for action. A colloquium report from the American Academy of Microbiology, April 4–6, 1995, Guayaquil, Ecuador. American Academy of Microbiology, Washington, DC, pp 1–40Google Scholar
  3. 48.
    Durham S (2006) Food safety: from farm to fork. Accessed 25 Dec 2014
  4. 59.
    Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology. In: Introduction to foodborne pathogens, 7th edn. Springer, New York, pp 519–544, Chapter 22Google Scholar
  5. 68.
    Atlas RM (1988) Microbiology: fundamentals and applications. In: Glossary of microbiological terms, 2nd edn. Macmillan, New York, pp 739–780Google Scholar
  6. 103.
    Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology. In: Food protection with chemicals, and by biocontrol, 7th edn. Springer, New York, pp 306–326, Chapter 13Google Scholar
  7. 105.
    Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology. In: Food protection with chemicals, and by biocontrol, 7th edn. Springer, New York, pp 327–341, Chapter 13Google Scholar
  8. 108. (2015). Accessed 21 Jan 2015
  9. 109.
    Merril W (1980) Theory and concepts of plant pathology. In: Means of Disease control: chemical control; heat treatment, 2nd edn. Department of Plant Pathology, The Pennsylvania State University, University Park, pp 1–29, Chapter 21Google Scholar
  10. 110.
    Merril W (1980) Theory and concepts of plant pathology. In: Means of disease control: biological control, 2nd edn. Department of Plant Pathology, The Pennsylvania State University, University Park, pp 23–27, Chapter 20Google Scholar
  11. 111.
    Watson TF, Moore L, Ware GW (1976) Practical insect pest management: a self-instruction manual, 1st edn. W.H. Freeman, San Francisco, pp 1–196Google Scholar
  12. 112.
    Van den Bosch R (1989) The pesticide conspiracy. University of California Press, Berkeley, pp 1–226Google Scholar
  13. 113.
    Koch AL (2006) The bacteria: their origin, structure, function and antibiosis. In: Development of wall antibiotics and bacterial counter-measures. Springer, Dordrecht, pp 185–200Google Scholar
  14. 114.
    Isaacson E, Torrence ME (eds) (2002) The role of antibiotics in agriculture. A colloquium report from the American Academy of Microbiology, November 2–4, 2001, Santa Fe, New Mexico. American Academy of Microbiology, Washington, DC, pp 1–24Google Scholar
  15. 115.
    CDC, Center for Disease Control and Prevention (2014) Antibiotic resistance threats in the United States, 2013 report. Accessed 15 Aug 2014
  16. 116.
    Koch AL (2006) The bacteria: their origin, structure, function and antibiosis. In: Antibiotics and resistance, with an emphasis on aminoglycosides. Springer, Dordrecht, pp 201–207, Chapter 20Google Scholar
  17. 117.
    Koch AL (2006) The bacteria: their origin, structure, function and antibiosis. In: Future chemotherapy aimed at the bacterial murein. Springer, Dordrecht, pp 209–216, Chapter 21Google Scholar
  18. 118.
    Greene SE, Reid A (eds) (2013) Moving targets: fighting the evolution of resistance in infections, pests and cancer. A colloquium report from the American Academy of Microbiology, July 2012, Philadelphia, PE. American Academy of Microbiology, Washington, DC, pp 1–44Google Scholar
  19. 119.
    WHO, World Health Organization, Department of Communicable Disease, Surveillance and Response (2002) Monitoring antimicrobial usage in food animals for the protection of human health, Report of a WHO consultation, Oslo, Norway 10–13 September 2001. Accessed 13 Aug 2014
  20. 120.
    WHO, World Health Organization, Regional Office for Europe (2011) Tackling antibiotic resistance from a food safety perspective in Europe.,%20 Accessed 11 Aug 2014
  21. 121.
    Asai T, Hiki M, Ozawa M, Koike R, Eguchi K, Kawanishi M, Kojima A, Endoh YS, Hamamoto S, Sakai M, Sekiya T (2014) Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan. Foodborne Pathog Dis 11(3):171–176CrossRefGoogle Scholar
  22. 122.
    Ogata K, Narimatsu H, Suzuki M, Higuchi W, Yamamoto T, Taniguchi H (2012) Commercially distributed meat as a potential vehicle for community-acquired methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(8):2797–2802CrossRefGoogle Scholar
  23. 123.
    Food Standards Australia New Zealand (2011) Treatment of apple trees with streptomycin and potential risk to human health. Accesses 25 Jan 2015
  24. 124.
    Li Y, Xie X, Xu X, Wang X, Chang H, Wang C, Wang A, He Y, Yu H, Wang X (2014) Nontyphoidal salmonella infection in children with acute gastroenteritis: prevalence, serotypes, and antimicrobial resistance in Shanghai, China. Foodborne Pathog Dis 11(3):200–206CrossRefGoogle Scholar
  25. 125.
    Chen S, Zhao S, White DG, Schroeder CM, Lu R, Yang H, McDermott PF, Ayers S, Meng J (2004) Characterization of multiple-antimicrobial-resistant salmonella serovars isolated from retail meats. Appl Environ Microbiol 70(1):1–7CrossRefGoogle Scholar
  26. 126.
    ECDC, European Centre for Disease Prevention and Control (2013) Surveillance report: annual epidemiological report 2013. Reporting on 2011 surveillance data and 2012 epidemic intelligence data. Accessed 25 Jan 2015
  27. 127.
    EFSA, European Food Safety Authority, and ECDC, European Centre for Disease Prevention and Control (2014) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2012. EFSA J, 12(3):3590, 1–336Google Scholar
  28. 128.
    Schmid H, Baumgartner A (2012) Foodborne outbreaks in Switzerland: current statistics, future developments, practical guidelines for the investigation of outbreaks and a historical review.,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCFfYF6gmym162epYbg2c_JjKbNoKSn6A. Accessed 04 Nov 2013
  29. 129.
    Gallati C, Stephan R, Hächler H, Malorny B, Schroeter A, Nüesch-Inderbinen M (2013) Characterization of Salmonella enterica Subsp. enterica Serovar 4,[5],12:i: clones isolated from human and other sources in Switzerland between 2007 and 2011. Foodborne Pathog Dis 10(6):549–554CrossRefGoogle Scholar
  30. 130.
    Borjesson S, Egervarn M, Lindblad M, Englund S (2013) Frequent occurrence of extended-spectrum beta-lactamase- and transferable AmpC beta-lactamase-producing Escherichia coli on domestic chicken meat in Sweden. Appl Environ Microbiol 79(7):2463–2466CrossRefGoogle Scholar
  31. 131.
    Sabra AH, Araj GF, Kattar MM, Abi-Rached RY, Khairallah MT, Klena JD, Matar GM (2009) Molecular characterization of ESBL-producing Shigella sonnei isolates from patients with bacilliary dysentery in Lebanon. [PDF] J Infect Dev Ctries 3(4):300–305. Accessed 27 July 2014
  32. 132.
    Bekele T, Zewde G, Tefera G, Feleke A, Zerom K (2014) Escherichia coli O157:H7 in raw meat in Addis Ababa, Ethiopia: prevalence at an abattoir and retailers and antimicrobial susceptibility. Int J Food Contam 1(1):1–8CrossRefGoogle Scholar
  33. 133.
    Derra FA, Karlsmose S, Monga DP, Mache A, Svendsen CA, Félix B, Granier SA, Geyid A, Taye G, Hendriksen RS (2013) Occurrence of Listeria spp. in retail meat and dairy products in the area of Addis Ababa, Ethiopia. Foodborne Pathog Dis 10(6):577–579CrossRefGoogle Scholar
  34. 134.
    Belkina T, Al Warafi A, Eltom HE, Tadjieva N, Kubena A, Vlcek J (2014) Antibiotic use and knowledge in the community of Yemen, Saudi Arabia, and Uzbekistan. J Infect Dev Ctries 8(4):424–429. Accessed 27 July 2014
  35. 135.
    Miller C, Heringa S, Kim J, Jiang X (2013) Analyzing indicator microorganisms, antibiotic resistant Escherichia coli, and regrowth potential of foodborne pathogens in various organic fertilizers. Foodborne Pathog Dis 10(6):520–527CrossRefGoogle Scholar
  36. 136.
    Moreno LZ, Paixão R, Gobbi DDS, Raimundo DC, Ferreira TP, Moreno AM, Hofer E, Reis CMF, Matté GR, Matté MH (2014) Characterization of antibiotic resistance in Listeria spp. isolated from slaughterhouse environments, pork and human infections. J Infect Dev Ctries 8(4):416–423. Accessed 27 July 2014
  37. 137.
    Raufu IA, Fashae K, Ameh JA, Ambali AG, Ogunsola FT, Coker AO, Hendriksen RS (2014) Persistence of fluoroquinolone-resistant Salmonella enterica serovar Kentucky from poultry and poultry sources in Nigeria. J Infect Dev Ctries 8(3):384–388. Accessed 27 July 2014
  38. 138.
    Public Health Agency of Canada (2012) Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS)—annual report 2012. Accessed 25 Jan 2014
  39. 139.
    Varallo C (2014) EU and US taskforce progress in fighting antimicrobial resistance. Accessed 20 July 2014
  40. 140.
    Hayes J, English LL, Carter PJ, Proescholdt T, Lee KY, Wagner DD, White DG (2003) Prevalence and antimicrobial resistance of enterococcus species isolated from retail meats. Appl Environ Microbiol 69(12):7153–7160CrossRefGoogle Scholar
  41. 141.
    Zhao S, Blickenstaff K, Bodeis-Jones S, Gaines SA, Tong E, McDermott PF (2012) Comparison of the prevalence and antimicrobial resistances of Escherichia coli isolates from different retail meats in the United States, 2002 to 2008. Appl Environ Microbiol 78(6):1701–1707CrossRefGoogle Scholar
  42. 142.
    FDA, U.S. Food and Drug Administration (2014) FDA summary report on antimicrobials sold or distributed for use in food producing animals. Accessed 16 Oct 2014
  43. 143.
    FDA, U.S. Food and Drug Administration (2013) FDA taking closer look at ‘Antibacterial’ soap. Accesses 21 Dec 2014
  44. 144.
    FDA, U.S. Food and Drug Administration (2011) Hand sanitizers carry unproven claims to prevent MRSA infections. Accessed 21 Dec 2014
  45. 145.
    Jahid IK, Sang-Do H (2014) The paradox of mixed-species biofilms in the context of food safety. Compr Rev Food Sci Food Saf 13(5):990–1011CrossRefGoogle Scholar
  46. 146.
    Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69(8):4519–4526CrossRefGoogle Scholar
  47. 147.
    Verghese B, Lok M, Wen J, Alessandria V, Chen Y, Kathariou S, Knabel S (2011) comK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation, and persistence. Appl Environ Microbiol 77(10):3279–3292CrossRefGoogle Scholar
  48. 148.
    Gamble R, Muriana PM (2007) Microplate fluorescence assay for measurement of the ability of strains of Listeria monocytogenes from meat and meat-processing plants to adhere to abiotic surfaces. Appl Environ Microbiol 73(16):5235–5244CrossRefGoogle Scholar
  49. 149.
    Anany H, Chen W, Pelton R, Griffiths MW (2011) Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol 77(18):6379–6387CrossRefGoogle Scholar
  50. 150.
    Kostaki M, Chorianopoulos N, Braxou E, Nychas GJ, Giaouris E (2012) Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl Environ Microbiol 78(8):2586–2595CrossRefGoogle Scholar
  51. 151.
    Romanova N, Favrin S, Griffiths MW (2002) Sensitivity of Listeria monocytogenes to sanitizers used in the meat processing industry. Appl Environ Microbiol 68(12):6405–6409CrossRefGoogle Scholar
  52. 152.
    Behnke S, Parker AE, Woodall D, Camper AK (2011) Comparing the chlorine disinfection of detached biofilm clusters with those of sessile biofilms and planktonic cells in single- and dual-species cultures. Appl Environ Microbiol 77(20):7176–7184CrossRefGoogle Scholar
  53. 153.
    Wolk DM, Johnson CH, Rice EW, Marshall MM, Grahn KF, Plummer CB, Sterling CR (2000) A spore counting method and cell culture model for chlorine disinfection studies of Encephalitozoon syn. Septata intestinalis. Appl Environ Microbiol 66(4):1266–1273CrossRefGoogle Scholar
  54. 154.
    Verluyten J, Messens W, De Vuyst L (2003) The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions. Appl Environ Microbiol 69(7):3833–3839CrossRefGoogle Scholar
  55. 155.
    Habimana O, Heir E, Langsrud S, Wold ÅA, Møretrø T (2010) Enhanced surface colonization by Escherichia coli O157:H7 in biofilms formed by an Acinetobacter calcoaceticus isolate from meat-processing environments. Appl Environ Microbiol 76(13):4557–4559CrossRefGoogle Scholar
  56. 156.
    Grand I, Bellon-Fontaine MN, Herry JM, Hilaire D, Moriconi FX, Naïtali M (2011) Possible overestimation of surface disinfection efficiency by assessment methods based on liquid sampling procedures as demonstrated by in situ quantification of spore viability. Appl Environ Microbiol 77(17):6208–6214CrossRefGoogle Scholar
  57. 157.
    Peneau S, Chassaing D, Carpentier B (2007) First evidence of division and accumulation of viable but nonculturable Pseudomonas fluorescens cells on surfaces subjected to conditions encountered at meat processing premises. Appl Environ Microbiol 73(9):2839–2846CrossRefGoogle Scholar
  58. 158.
    Sule P, Horne SM, Logue CM, Prüß BM (2011) Regulation of cell division, biofilm formation, and virulence by FlhC in Escherichia coli O157:H7 grown on meat. Appl Environ Microbiol 77(11):3653–3662CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Aleardo Zaccheo
    • 1
  • Eleonora Palmaccio
    • 1
  • Morgan Venable
    • 2
  • Isabella Locarnini-Sciaroni
    • 3
  • Salvatore Parisi
    • 4
  1. 1.bioethica food safety engineering sagl.Lugano-PregassonaSwitzerland
  2. 2.Consultant Registered DieticianMedegliaSwitzerland
  3. 3.Salumificio Sciaroni S.A.SementinaSwitzerland
  4. 4.Industrial ConsultantPalermoItaly

Personalised recommendations