Skip to main content

Two-Fluid Model CFD

  • Chapter
  • First Online:
Book cover Two-Fluid Model Stability, Simulation and Chaos

Abstract

In this chapter we first address TFM CFD simulations for several cases of bubbly flow that are of engineering interest. We then consider the application of the two-phase 1D TFM stability results of previous chapters to TFM CFD, specifically to the numerical convergence of an ill-posed model.

Multidimensional TFM CFD usually implies turbulence modeling and this chapter addresses both a stable Reynolds Averaged (RANS) TFM and an unstable RANS (URANS) model.

The first topic is the derivation of a kε model for a RANS TFM and several applications are discussed. Next a special near-wall TFM averaging is performed to match the two-phase logarithmic law of the wall of Marie et al. (International Journal of Multiphase Flow, 23: 227–247, 1997) to the two-phase kε model so that convergence is preserved. Finally the simulation of a chaotic bubble plume with a URANS model is considered. A subscale Smagorinsky model stabilizes the nonlinear small scale turbulence but is not sufficient for linear stability of the model. Additional interfacial forces are needed and the stabilizing effect of the interfacial pressure difference and the collision force is investigated, following the analysis of Chap. 5. These forces prevent ill-posed short wavelength oscillations and allow convergence of the numerical model. The convergence of the turbulence spectrum of the well-posed model is demonstrated using the statistical approach of Chap. 4 for chaotic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ANSYS CFX 15.0. (2013). CFX solver theory guide.

    Google Scholar 

  • Antal, S. P., Lahey, R. T., & Flaherty, J. E. (1991). Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 17, 635–652.

    Article  MATH  Google Scholar 

  • Arnold, G. S., Drew, D. A., & Lahey, R. T. (1989). Derivation of constitutive-equations for interfacial force and Reynolds stress for a suspension of spheres using ensemble cell averaging. Chemical Engineering Communications, 86, 43–54.

    Article  Google Scholar 

  • Auton, T. R. (1987). The lift force on a spherical body in a rotational flow. Journal of Fluid Mechanics, 183, 199–218.

    Article  MATH  Google Scholar 

  • Bagchi, P., & Balachandar, S. (2003). Effect of turbulence on the drag and lift of a particle. Physics of Fluids, 15, 3496–3513.

    Article  MATH  Google Scholar 

  • Batchelor, G. K., & Townsend, A. A. (1956). Turbulent diffusion. In G. K. Batchelor & R. M. Davies (Eds.), Surveys in mechanics: G. I. Taylor anniversary volume. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brucato, A., Grisafi, F., & Montante, G. (1998). Particle drag coefficients in turbulent fluids. Chemical Engineering Science, 53(18), 3295–3314.

    Article  Google Scholar 

  • Burns, A. D., Frank, T., Hamill, I., & Shi, J. M. (2004). The Favre averaged drag model for turbulent dispersion in Eulerian multiphase flows. In 5th International Conference on Multiphase Flow, Yokohama, Japan, May 30–June 4.

    Google Scholar 

  • Caballina, O., Climent, E., & Dusek, J. (2003). Two-way coupling simulations of instabilities in a plane bubble plume. Physics of Fluids, 15(6), 1535–1544.

    Article  MATH  Google Scholar 

  • Chahed, J., Roig, V., & Masbernat, L. (2003). Eulerian-Eulerian two-fluid model for turbulent gas-liquid bubbly flows. International Journal of Multiphase Flow, 29(1), 23–49.

    Article  MATH  Google Scholar 

  • Deen, N. G., Solberg, T., & Hjertager, B. H. (2001). Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column. Chemical Engineering Science, 56, 6341–6349.

    Article  Google Scholar 

  • Drew, D. A., & Passman, S. L. (1999). Theory of multicomponent fluids (Applied Mathematical Sciences). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Elghobashi, S. E., & Abou-Arab, T. W. (1983). A two-equation turbulence model for two-phase flows. Physics of Fluids, 26, 931.

    Article  MATH  Google Scholar 

  • Frank, T., Shi, J. M., & Burns, A. D. (2004). Validation of Eulerian multiphase flow models for nuclear safety applications. In Third International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa.

    Google Scholar 

  • Hanjalic, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 98, 58–69.

    MATH  Google Scholar 

  • Ishii, M. (1975) Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris.

    Google Scholar 

  • Ishii, M., & Chawla, T. C. (1979). Local drag laws in dispersed two-phase flow. Argonne: ANL.

    Google Scholar 

  • Ishii, M., & Hibiki, T. (2006). Thermo-fluid dynamics of two-phase flow. New York: Springer.

    Book  MATH  Google Scholar 

  • Kataoka, I., & Serizawa, A. (1989). Basic equations of turbulence in gas-liquid 2-phase flow. International Journal of Multiphase Flow, 15(5), 843–855.

    Article  MATH  Google Scholar 

  • Kurose, R., & Komori, S. (1999). Drag and lift forces on a rotating sphere in laminar shear flows. Journal of Fluid Mechanics, 384, 183–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Lakehal, D. D., Smith, B. L., & Milelli, M. (2002). Large eddy simulation of bubbly turbulent shear flows. Journal of Turbulence, 3.

    Google Scholar 

  • Lance, M., & Bataille, J. (1991). Turbulence in the liquid phase of a uniform bubbly air-water flow. Journal of Fluid Mechanics, 222, 95–118.

    Article  Google Scholar 

  • Lance, M., & Lopez de Bertodano, M. (1996). Phase distribution phenomena and wall effects in bubbly two-phase flows. In Multiphase science and technology (Vol. 8, Ch. 2, pp. 69–123). Begell House, Inc.

    Google Scholar 

  • Larreteguy, A. E., Drew, D. A., & Lahey, Jr., R. T. (2002). A particle center-averaged two-fluid model for wall-bounded bubbly flows. In ASME Fluid Engineering Division Summer Meeting, Montreal.

    Google Scholar 

  • Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.

    Article  MATH  Google Scholar 

  • Legendre, D., & Magnaudet, J. (1998). The lift force on a spherical bubble in viscous linear flow. Journal of Fluid Mechanics, 368, 81–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Lopez de Bertodano, M. (1992). Turbulent bubbly two-phase flow in a triangular duct. Troy, NY.

    Google Scholar 

  • Lopez de Bertodano, M., Lahey, R. T., Jr., & Jones, O. C. (1994a). Development of a k-epsilon model for bubbly two-phase flow. Journal of Fluids Engineering, 116, 128–134.

    Article  MATH  Google Scholar 

  • Lopez de Bertodano, M., Lahey, R. T., Jr., & Jones, O. C. (1994b). Phase distribution in bubbly two-phase flow in vertical ducts. International Journal of Multiphase Flow, 20(5), 805–818.

    Article  MATH  Google Scholar 

  • Lucas, D., Prasser, H.-M., & Manera, A. (2005). Influence of the lift force on the stability of a bubble column. Chemical Engineering Science, 60(13), 3609–3619.

    Article  Google Scholar 

  • Ma, T., Ziegenhein, T., Lucas, D., & Frohlich, J. (2016). Large eddy simulations of the gas-liquid flow in a rectangular bubble column. Nuclear Engineering and Design, 299, 146–153.

    Article  Google Scholar 

  • Marie, J. L., Moursali, E., & Tran-Cong, S. (1997). Similarity law and turbulence intensity profiles in a bubbly boundary layer. International Journal of Multiphase Flow, 23, 227–247.

    Article  MATH  Google Scholar 

  • Moraga, F. J., Larreteguy, A. E., Drew, D. A., & Lahey, R. T., Jr. (2006). A center-averaged two-fluid model for wall-bounded bubbly flows. Computers and Fluids, 35, 429–461.

    Article  MATH  Google Scholar 

  • Mostafa, A. A., & Mongia, H. C. (1988). On the interaction of particles and turbulent fluid flow. International Journal of Heat and Mass Transfer, 31(10), 2063–2075.

    Article  Google Scholar 

  • Naciri, M. A. (1992). Contribution a l’etude des forces exercees por un liquide sur une bulle de gaz, masse ajoutee et interactions hydrodynamiques. Ph. D. thesis, L’Ecole Central de Lyon, Lyon, France.

    Google Scholar 

  • Nakoryakov, V. E., Kashinsky, O. N., Kozmenko, B. K., & Gorelik, R. S. (1986). Study of upward bubbly flow at low liquid velocities. Izvestija Sibirskogo Otdelenija Akademii Nauk SSSR, 16, 15–20.

    Google Scholar 

  • Naot, D., & Rodi, W. (1982). Calculation of secondary currents in channel flow. Proceedings of the American Society of Civil Engineers, 108(HY8), 948–968.

    Google Scholar 

  • Narayanan, C. & Lakehal, D. (2002) Temporal instabilities of a mixing layer with uniform and nonuniform particle loadings, Physics of Fluids, 14(11):3775–3789.

    Google Scholar 

  • Niceno, B., Dhotre, M. T., & Deen, N. G. (2008). One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow. Chemical Engineering Science, 63, 3923–3931.

    Article  Google Scholar 

  • Prandtl, L. (1925). A report on testing for built-up turbulence. ZAMM Journal of Applied Mathematics and Mechanics, 5.

    Google Scholar 

  • Reddy Vanga, B. N. (2004). Experimental investigation and two fluid model large eddy simulations of re-circulating turbulent flow in bubble columns. West Lafayette, IN: Purdue University.

    Google Scholar 

  • Reeks, M. W. (1991). On a kinetic equation for the transport of bubbles in turbulent flows. Physics of Fluids A, 3(3), 446–456.

    Article  MathSciNet  MATH  Google Scholar 

  • Reeks, M. W. (1992). On the continuum equations for dispersed bubbles in non-uniform flows. Physics of Fluids A, 4(6), 1290–1302.

    Article  MATH  Google Scholar 

  • Roig, V., Suzanne, C., & Masbernat, L. (1997). Experimental investigation of a turbulent bubbly mixing layer. International Journal of Multiphase Flow, 24, 35–54.

    Article  MATH  Google Scholar 

  • Saffman, P. G. (1956). On the rise of small air bubbles in water. Journal of Fluid Mechanics, 1, 249–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Sato, Y., & Sekoguchi, K. (1975). Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow, 2, 79–95.

    Article  MATH  Google Scholar 

  • Serizawa, A., Kataoka, I., & Michiyoshi, I. (1986). Phase distribution in bubbly flow, data set no. 24. In The Second International Workshop on Two-Phase Flow Fundamentals, Troy.

    Google Scholar 

  • Shuen, J. S., Solomon, A. S. P., Zhang, Q. F., & Faeth, G. M. (1983). A theoretical and experimental study of turbulent particle-laden lets (Technical Report 168293, NASA-CR).

    Google Scholar 

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99–165.

    Article  Google Scholar 

  • Squires, K. D., & Eaton, J. K. (1990). Particle response and turbulence modification in isotropic turbulence. Physics of Fluids A: Fluid Dynamics, 2(7), 1191–1203.

    Article  Google Scholar 

  • Sun, T.-Y. (1985). A theoretical and experimental study on noncondensible turbulent bubbly jets. Ph.D. Dissertation, The Pennsylvania State University, University Park, PA.

    Google Scholar 

  • Tennekes, H. & Lumley, J. (1974). A First Course in Turbulence. The MIT Press.

    Google Scholar 

  • Tomiyama, A., Kataoka, I., Zun, I., & Sakaguchi, T. (1998). Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B Fluids and Thermal Engineering, 41(2), 472–479.

    Article  Google Scholar 

  • Tomiyama, A., Tamai, H., Zun, I., & Hosokawa, S. (2002). Transverse migration of single bubbles in simple shear flows. Chemical Engineering Science, 57(11), 1849–1858.

    Article  Google Scholar 

  • Tran-Cong, S., Marie, J. L., & Perkins, R. J. (2008). Bubble migration in a turbulent boundary layer. International Journal of Multiphase Flow, 34, 786–807.

    Article  Google Scholar 

  • Vaidheeswaran, A., Fullmer, W. D., & Lopez de Bertodano, M. (2017). Effect of collision force on well-posedness and stability of the two-fluid model for vertical bubbly flows. Nuclear Science and Engineering (Accepted for publication).

    Google Scholar 

  • Vaidheeswaran, A., Prabhudharwadkar, D., Guilbert, P., Buchanan, Jr., J. R., & Lopez de Bertodano, M. (2017). New two-fluid model near-wall averaging and consistent matching for turbulent bubbly flows. Journal of Fluids Engineering, 139(1), 011302-1, 011302-11.

    Google Scholar 

  • Wang, S. K., Lee, S. J., Jones, O. C., Jr., & Lahey, R. T., Jr. (1987). 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. International Journal of Multiphase Flow, 13, 327–343.

    Article  Google Scholar 

  • Zhang, D., N. G. Deen and J. A. Kuipers (2006) “Numerical Simulation of the Dynamic Flow Behavior in a Bubble Column: A study of Closures for Turbulence and Interface Forces,” Chemical Engineering Science, 61:7593–7608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Bertodano, M.L., Fullmer, W., Clausse, A., Ransom, V.H. (2017). Two-Fluid Model CFD. In: Two-Fluid Model Stability, Simulation and Chaos. Springer, Cham. https://doi.org/10.1007/978-3-319-44968-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44968-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44967-8

  • Online ISBN: 978-3-319-44968-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics