Skip to main content

Fixed-Flux Model

  • Chapter
  • First Online:
Two-Fluid Model Stability, Simulation and Chaos

Abstract

Following the procedures developed in Chap. 2, the Fixed-Flux Model (FFM) is applied here to the stability of vertical bubbly flow. The virtual mass force and the interfacial pressure are introduced to obtain a conditionally well-posed TFM. Then a collision-induced pressure is considered and we adopt the interfacial collision force derived from the Enskog kinetic equation by Alajbegovic et al. (Chemical Engineering Communications 174: 85–133, 1999). When this force is incorporated into the FFM it removes the Kelvin–Helmholtz-type instability completely, resulting in an unconditionally well-posed model. These mechanisms are also associated with the acoustic and material wave speeds so they have an effect on the fidelity of the model. Therefore, while the pursuit of a complete TFM may be impractical, it is at least possible to obtain a well-posed model with the correct wave speeds. Finally, the nonlinear behavior of the well-posed FFM for bubbly flow, first analyzed by Park et al. (International Journal of Multiphase Flow 24: 1205–1244, 1998), is investigated with numerical simulations for stable flow and for kinematically unstable waves for conditions similar to a Guinness draught beer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, K., Loezos, P. N., Syamlal, M., & Sundaresan, S. (2001). The role of meso-scale structures in rapid gas–solid flows. Journal of Fluid Mechanics, 445, 151–185.

    Article  MATH  Google Scholar 

  • Alajbegovic, A., Drew, D. A., & Lahey, R. T., Jr. (1999). An analysis of phase distribution and turbulence in dispersed particle/liquid flows. Chemical Engineering Communications, 174, 85–133.

    Article  Google Scholar 

  • Alexander, C. A., & Zare, R. N. (2004). Do bubbles in Guinness go down? Retrieved from http://www.stanford.edu/group/Zarelab/guinness/

  • Batchelor, G. K. (1988). A new theory of the instability of a uniform fluidized-bed. Journal of Fluid Mechanics, 193, 75–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Benilov, E. S., Cummins, C. P. and Lee, W. T. (2013). Why do bubbles in Guinness sink? American Journal of Physics, 81(2), 88. http://arxiv.org/pdf/1205.5233v1.pdf

  • Bestion, D. (1990). The physical closure laws in the CATHARE code. Nuclear Engineering and Design, 124, 229–245.

    Article  Google Scholar 

  • Carnahan, N. F., & Starling, K. E. (1969). Equations of state for non-attracting rigid spheres. Journal of Chemical Physics, 51, 635–636.

    Article  Google Scholar 

  • Drew, D. A., & Lahey, R. T., Jr. (1987). The virtual mass and lift force on a sphere in rotating and straining inviscid fluid. International Journal of Multiphase Flow, 13(1), 113–121.

    Article  MATH  Google Scholar 

  • Drew, D. A., & Passman, S. L. (1999). Theory of multicomponent fluids. Springer, Berlin: Applied Mathematical Sciences.

    Book  MATH  Google Scholar 

  • Fullmer, W. D., & Hrenya, C. M. (2016). Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization. AIChE Journal, 62(1), 11–17.

    Article  Google Scholar 

  • Fullmer, W. D., & Hrenya, C. M. (2017). The clustering instability in rapid granular and gas-solid flows. Annual Review of Fluid Mechanics, 49, 485–510.

    Google Scholar 

  • Garzó, V., & Santos, A. (2003). Kinetic theory of gases in shear flows. Dordrecht, the Netherlands: Springer.

    Book  MATH  Google Scholar 

  • Haley, T. C., Drew, D. A., & Lahey, R. T. (1991). An analysis of the eigenvalues of bubbly two-phase flows. Chemical Engineering Communications, 106, 93–117.

    Article  Google Scholar 

  • Henry, R. E., Grolmes, M. A., & Fauske, H. K. (1971) Pressure-pulse propagation in two-phase one- and two-component mixtures (Technical Report ANL-7792). Argonne National Laboratory.

    Google Scholar 

  • Ishii, M., & Chawla, T. C. (1979). Local drag laws in dispersed two-phase flow. Argonne: ANL.

    Google Scholar 

  • Ishii, M., & Hibiki, T. (2006). Thermo-fluid dynamics of two-phase flow. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kytomaa, H. K. & Brennen, C. E. (1991). Small Amplitude Kinematic Wave Propagation in Two-component Media, International Journal of Multiphase Flow, 17(1), 13–26.

    Google Scholar 

  • Lopez de Bertodano, M. A., Fullmer W., Vaidheeswaran, A. (2013). One-Dimensional Two-Equation Two-Fluid Model Stability. Multiphase Science and Technology, 25(2), 133–167.

    Google Scholar 

  • Ma, D., & Ahmadi, G. (1988). A kinetic-model for rapid granular flows of nearly elastic particles including interstitial fluid effects. Powder Technology, 56(3), 191–207.

    Article  Google Scholar 

  • Park, S. W., Drew, D. A., & Lahey, R. T., Jr. (1998). The analysis of void wave propagation in adiabatic monodispersed bubbly two-phase flows using an ensemble-averaged two fluid model. International Journal of Multiphase Flow, 24, 1205–1244.

    Article  MATH  Google Scholar 

  • Pauchon, C., & Banerjee, S. (1986). Interphase momentum interaction effects in the averaged multifield model. International Journal of Multiphase Flow, 12, 559–573.

    Article  Google Scholar 

  • Robinson, M., Fowler, A. C., Alexander, A. J., & O’Brien, S. B. (2008). Waves in Guinness. Physics of Fluids, 20, 067101.

    Article  MATH  Google Scholar 

  • Stuhmiller, J. H. (1977). The influence of interfacial pressure forces on the character of two-phase flow model equations. International Journal of Multiphase Flow, 3, 551–560.

    Article  MATH  Google Scholar 

  • Wallis, G. B. (1969). One-dimensional two-phase flow. New York: McGraw-Hill.

    Google Scholar 

  • Watanabe, T., Hirano, M., Tanabe, F., & Kamo, H. (1990). The effect of the virtual mass force term on the numerical stability and efficiency of system calculations. Nuclear Engineering and Design, 120, 181. doi:10.1016/0029-5493(90)90371-4.

    Article  Google Scholar 

  • Watanabe, T., & Kukita, Y. (1992). The effect of the virtual mass term on the stability of the two-fluid model against perturbations. Nuclear Engineering and Design, 135, 327. doi:10.1016/0029-5493(92)90200-F.

    Article  Google Scholar 

  • Whitham, G. B. (1974). Linear and nonlinear waves. New York: Wiley.

    MATH  Google Scholar 

  • Zuber, N. (1964). On the dispersed two-phase flow in the laminar flow regime. Chemical Engineering Science, 19, 897. doi:10.1016/0009-2509(64)85067-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Bertodano, M.L., Fullmer, W., Clausse, A., Ransom, V.H. (2017). Fixed-Flux Model. In: Two-Fluid Model Stability, Simulation and Chaos. Springer, Cham. https://doi.org/10.1007/978-3-319-44968-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44968-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44967-8

  • Online ISBN: 978-3-319-44968-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics