Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 340 Accesses

Abstract

Since the confirmation of the existence of atoms in the nineteenth century, we know that ordinary matter is associated with a scale that determines its chemical properties. Below this scale, matter can no longer be divided without a dramatic modification of its properties, and has been shown not to obey the laws of classical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the SM, the normalization of the hypercharge is free since there is no requirement from anomaly cancellation and only the product \(g' Y\) appears. On the other hand, assuming that the SM gauge groups are obtained from \(\mathrm{SU}(5)\) and/or \(\mathrm{SO}(10)\) fixes the normalization of the hypercharge, which is necessary for testing gauge coupling unification.

  2. 2.

    Scalar fields do not have chirality, and in this case “right-handed” is just a reminder for the quantum numbers of the fermionic partner.

References

  1. D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  2. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Article  ADS  Google Scholar 

  3. D. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633–3652 (1973)

    Article  ADS  Google Scholar 

  4. D. Gross, F. Wilczek, Asymptotically free gauge theories. 2. Phys. Rev. D 9, 980–993 (1974)

    Article  ADS  Google Scholar 

  5. E. Fermi, An attempt of a theory of beta radiation. 1. Z. Phys. 88, 161–177 (1934)

    Article  ADS  Google Scholar 

  6. R. Feynman, M. Gell-Mann, Theory of Fermi interaction. Phys. Rev. 109, 193–198 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  8. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  9. A. Salam, Weak and electromagnetic interactions. Conf. Proc. C680519, 367–377 (1968)

    Google Scholar 

  10. S. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)

    Article  ADS  Google Scholar 

  11. Gargamelle Neutrino Collaboration, F. Hasert et al., Observation of neutrino like interactions without muon or electron in the gargamelle neutrino experiment. Phys. Lett. B46, 138–140 (1973)

    Google Scholar 

  12. UA1 Collaboration, G. Arnison et al., Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s} = 540\) GeV. Phys. Lett. B122, 103–116 (1983)

    ADS  Google Scholar 

  13. UA1 Collaboration, G. Arnison et al., Experimental observation of lepton pairs of invariant mass around 95 GeV/c\(^2\) at the CERN SPS collider. Phys. Lett. B126, 398–410 (1983)

    Google Scholar 

  14. UA2 Collaboration, M. Banner et al., Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN \(\bar{p}p\) collider. Phys. Lett. B122, 476–485 (1983)

    ADS  Google Scholar 

  15. UA2 Collaboration, P. Bagnaia et al., Evidence for \(Z^0 \rightarrow e^+e^-\) at the CERN \(\bar{p}p\) collider. Phys. Lett. B129, 130–140 (1983)

    ADS  Google Scholar 

  16. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964)

    Article  ADS  Google Scholar 

  18. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  20. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554–1561 (1967)

    Article  ADS  Google Scholar 

  22. Y. Nambu, Axial vector current conservation in weak interactions. Phys. Rev. Lett. 4, 380–382 (1960)

    Article  ADS  Google Scholar 

  23. J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154–164 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)

    Article  ADS  Google Scholar 

  26. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  27. Super-Kamiokande Collaboration, Y. Fukuda et al., Neutrino induced upward stopping muons in Super-Kamiokande. Phys. Lett. B467 (1999) 185–193. hep-ex/9908049

    Google Scholar 

  28. B. Pontecorvo, Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957)

    ADS  Google Scholar 

  29. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP 26, 984–988 (1968)

    ADS  Google Scholar 

  31. L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  32. A. Hocker, H. Lacker, S. Laplace, F. Le Diberder, A new approach to a global fit of the CKM matrix. Eur. Phys. J. C 21, 225–259 (2001). hep-ph/0104062

    Article  ADS  Google Scholar 

  33. http://ckmfitter.in2p3.fr/www/results/plots_moriond14/ckm_res_moriond14.html

  34. M. Ciuchini, G. D’Agostini, E. Franco, V. Lubicz, G. Martinelli et al., 2000 CKM triangle analysis: a critical review with updated experimental inputs and theoretical parameters. JHEP 0107, 013 (2001). hep-ph/0012308

    Article  ADS  Google Scholar 

  35. http://www.utfit.org/UTfit/

  36. UTfit Collaboration, M. Bona et al., Model-independent constraints on \(\Delta F=2\) operators and the scale of new physics. JHEP 0803, 049 (2008). arXiv:0707.0636

  37. G. Isidori, Y. Nir, G. Perez, Flavor physics constraints for physics beyond the standard model. Ann. Rev. Nucl. Part. Sci. 60, 355 (2010). arXiv:1002.0900

    Article  ADS  Google Scholar 

  38. M.E.G. Collaboration, J. Adam et al., New constraint on the existence of the \(\mu ^+ \rightarrow e^+\gamma \) decay. Phys. Rev. Lett. 110(20), 201801 (2013). arXiv:1303.0754

    Article  Google Scholar 

  39. A.C.M.E. Collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343(6168), 269–272 (2014). arXiv:1310.7534

    Article  Google Scholar 

  40. ATLAS Collaboration, G. Aad et al., Search for excited electrons and muons in \(\sqrt{s} =8\) TeV proton–proton collisions with the ATLAS detector. New J. Phys. 15, 093011 (2013). arXiv:1308.1364

  41. CMS Collaboration, V. Khachatryan et al., Search for excited quarks in the \(\gamma +\text{jet}\) final state in proton–proton collisions at \(\sqrt{s} = 8\) TeV. arXiv:1406.5171

  42. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257–454 (2006). hep-ex/0509008

    Google Scholar 

  43. M. Baak, J. Cuth, J. Haller, A. Hoecker, R. Kogler et al., The global electroweak fit at NNLO and prospects for the LHC and ILC. arXiv:1407.3792

  44. Muon G-2 Collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D73, 072003 (2006). hep-ex/0602035

    Google Scholar 

  45. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, \((g-2)_\mu \) and \(\alpha (M_Z^2)\) re-evaluated using new precise data. J. Phys. G38, 085003 (2011). arXiv:1105.3149

    Article  ADS  Google Scholar 

  46. M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles: An Account of Four-Dimensional \(\text{ N }=1\) Supersymmetry in High Energy Physics (World Scientific, Singapore, 2004)

    Google Scholar 

  47. S.P. Martin, A supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 21, 1–153 (2010). hep-ph/9709356

    Article  ADS  MATH  Google Scholar 

  48. EXO-200 Collaboration, J. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data. Nature 510, 229–234 (2014). arXiv:1402.6956

  49. C. Baker, D. Doyle, P. Geltenbort, K. Green, M. van der Grinten et al., An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006). hep-ex/0602020

    Google Scholar 

  50. M. Pospelov, A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules. Phys. Rev. Lett. 83, 2526–2529 (1999). hep-ph/9904483

    Article  ADS  Google Scholar 

  51. R. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440–1443 (1977)

    Article  ADS  Google Scholar 

  52. R. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791–1797 (1977)

    Article  ADS  Google Scholar 

  53. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). hep-ph/0404175

    Article  ADS  Google Scholar 

  54. G. Bertone et al., Particle Dark Matter: Observations (Models and Searches. Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  55. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  56. V. Rubin, N. Thonnard, J. Ford, W.K., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC \(4605/\text{ R } = 4\rm {kpc}/\) to UGC 2885/\(R = 122\) kpc/. Astrophys. J. 238, 471 (1980)

    Google Scholar 

  57. T. van Albada, J.N. Bahcall, K. Begeman, R. Sancisi, The distribution of dark matter in the spiral galaxy NGC-3198. Astrophys. J. 295, 305–313 (1985)

    Article  ADS  Google Scholar 

  58. Planck Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076

  59. W.M.A.P. Collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538

    Article  Google Scholar 

  60. D. Clowe, A. Gonzalez, M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: direct evidence for the existence of dark matter. Astrophys. J. 604, 596–603 (2004). astro-ph/0312273

    Article  ADS  Google Scholar 

  61. D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006). astro-ph/0608407

    Article  ADS  Google Scholar 

  62. A. Sakharov, Violation of CP invariance, c asymmetry, and Baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967)

    Google Scholar 

  63. F. Csikor, Z. Fodor, J. Heitger, Endpoint of the hot electroweak phase transition. Phys. Rev. Lett. 82, 21–24 (1999). hep-ph/9809291

    Article  ADS  MATH  Google Scholar 

  64. LEP Working Group for Higgs Boson Searches, ALEPH, DELPHI, L3, OPAL OPAL Collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003). hep-ex/0306033

    Google Scholar 

  65. BICEP2 Collaboration, P. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112, 241101 (2014). arXiv:1403.3985

    Article  ADS  Google Scholar 

  66. S.R. Coleman, J. Mandula, All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967)

    Article  ADS  MATH  Google Scholar 

  67. R. Haag, J.T. Lopuszanski, M. Sohnius, All possible generators of supersymmetries of the s matrix. Nucl. Phys. B 88, 257 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  68. J.R. Ellis, S. Kelley, D.V. Nanopoulos, Probing the desert using gauge coupling unification. Phys. Lett. B 260, 131–137 (1991)

    Article  ADS  Google Scholar 

  69. U. Amaldi, W. de Boer, H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260, 447–455 (1991)

    Article  ADS  Google Scholar 

  70. P. Langacker, M.-X. Luo, Implications of precision electroweak experiments for \(M_t\), \(\rho _{0}\), \(\sin ^2\theta _W\) and grand unification. Phys. Rev. D 44, 817–822 (1991)

    Article  ADS  Google Scholar 

  71. C. Giunti, C. Kim, U. Lee, Running coupling constants and grand unification models. Mod. Phys. Lett. A 6, 1745–1755 (1991)

    Article  ADS  Google Scholar 

  72. H. Goldberg, Constraint on the photino mass from cosmology. Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  73. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453–476 (1984)

    Article  ADS  Google Scholar 

  74. S. Dimopoulos, D.W. Sutter, The supersymmetric flavor problem. Nucl. Phys. B 452, 496–512 (1995). hep-ph/9504415

    Article  ADS  Google Scholar 

  75. MSSM Working Group Collaboration, A. Djouadi et al., The minimal supersymmetric standard model: group summary report. hep-ph/9901246

    Google Scholar 

  76. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459, 1–241 (2008). hep-ph/0503173

    Article  ADS  Google Scholar 

  77. A. Djouadi, Implications of the Higgs discovery for the MSSM. arXiv:1311.0720

  78. F. Brummer, S. Kraml, S. Kulkarni, Anatomy of maximal stop mixing in the MSSM. JHEP 1208, 089 (2012). arXiv:1204.5977

    Article  ADS  Google Scholar 

  79. Super-Kamiokande Collaboration, H. Nishino et al., Search for nucleon decay into charged anti-lepton plus meson in Super-Kamiokande I and II. Phys. Rev. D 85, 112001 (2012). arXiv:1203.4030

    Article  Google Scholar 

  80. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575–579 (1978)

    Article  ADS  Google Scholar 

  81. M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures. JHEP 1209, 035 (2012). arXiv:1110.6926

    Article  Google Scholar 

  82. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rept. 267, 195–373 (1996). hep-ph/9506380

    Google Scholar 

  83. E.W. Kolb, M.S. Turner, The Early Universe, vol. 69. Frontiers in Physics (1990)

    Google Scholar 

  84. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke et al., DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 0407, 008 (2004). astro-ph/0406204

    Article  ADS  Google Scholar 

  85. A. Arbey, F. Mahmoudi, SuperIso Relic: a program for calculating relic density and flavor physics observables in supersymmetry. Comput. Phys. Commun. 181, 1277–1292 (2010). arXiv:0906.0369

    Article  ADS  MATH  Google Scholar 

  86. A. Arbey, F. Mahmoudi, SuperIso Relic v3.0: a program for calculating relic density and flavour physics observables: extension to NMSSM. Comput. Phys. Commun. 182, 1582–1583 (2011)

    Article  ADS  Google Scholar 

  87. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). arXiv:0803.2360

    Article  ADS  MATH  Google Scholar 

  88. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs_3: a program for calculating dark matter observables. Comput. Phys. Commun. 185, 960–985 (2014). arXiv:1305.0237

    Article  ADS  Google Scholar 

  89. LUX Collaboration, D. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility. arXiv:1310.8214

  90. J. Billard, L. Strigari, E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89, 023524 (2014). arXiv:1307.5458

    Article  ADS  Google Scholar 

  91. Fermi-LAT Collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope. Phys. Rev. D 89, 042001 (2014). arXiv:1310.0828

    Article  ADS  Google Scholar 

  92. IceCube Collaboration, M. Aartsen et al., The IceCube Neutrino Observatory Part IV: searches for dark matter and exotic particles. arXiv:1309.7007

  93. ATLAS Collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector at the LHC. ATLAS-CONF-2012-147

    Google Scholar 

  94. CMS Collaboration, Search for new physics in monojet events in pp collisions at \(\sqrt{s} = 8\) TeV. CMS-PAS-EXO-12-048

    Google Scholar 

  95. CMS Collaboration, Search for dark matter and large extra dimensions in the \(\gamma + \text{/ }\!\!\!{E}_T\) final state in pp collisions at \(\sqrt{s} = 8\) TeV. CMS-PAS-EXO-12-047

    Google Scholar 

  96. CMS Collaboration, Search for dark matter in the mono-lepton channel with pp collision events at \(\sqrt{s} = 8\) TeV. CMS-PAS-EXO-13-004

    Google Scholar 

  97. H. Baer, X. Tata, Dark matter and the LHC. arXiv:0805.1905

  98. H. Baer, K.-Y. Choi, J.E. Kim, L. Roszkowski, Non-thermal dark matter: supersymmetric axions and other candidates. arXiv:1407.0017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BĂ©ranger Dumont .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dumont, B. (2017). Introduction. In: Higgs, Supersymmetry and Dark Matter After Run I of the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44956-2_1

Download citation

Publish with us

Policies and ethics