Skip to main content

A Constraint Programming Approach to Multi-Robot Task Allocation and Scheduling in Retirement Homes

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

We study the application of constraint programming (CP) to the planning and scheduling of multiple social robots interacting with residents in a retirement home. The robots autonomously organize and facilitate group and individual activities among residents. The application is a multi-robot task allocation and scheduling problem in which task plans must be determined that integrate with resident schedules. The problem involves reasoning about disjoint time windows, inter-schedule task dependencies, user and robot travel times, as well as robot energy levels. We propose mixed-integer programming (MIP) and CP approaches for this problem and investigate methods for improving our initial CP approach using symmetry breaking, variable ordering heuristics, and large neighbourhood search. We introduce a relaxed CP model for determining provable bounds on solution quality. Experiments indicate substantial superiority of the initial CP approach over MIP, and subsequent significant improvements in the CP approach through our manipulations. This work is one of the few, of which we are aware, that applies CP to multi-robot task allocation and scheduling problems. Our results demonstrate the promise of CP scheduling technology as a general optimization infrastructure for such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Luca, A.E., Bonacci, S., Giraldi, G.: Aging populations: the health and quality of life of the elderly. La Clinica Terapeutica 162(1), e13-8 (2010)

    Google Scholar 

  2. Francesca, C., Ana, L.-N., Jérôme, M., Frits, T.: OECD Help, Health Policy Studies Wanted? Providing, Paying for Long-Term Care: Providing and Paying for Long-Term Care, vol. 2011. OECD Publishing (2011)

    Google Scholar 

  3. Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially sassistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Directors Assoc. 13(2), 114–120 (2012)

    Article  Google Scholar 

  4. Louie, W.-Y.G., Vaquero, T., Nejat, G., Beck, J.C.: An autonomous assistive robot for planning, scheduling and facilitating multi-user activities. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5292–5298. IEEE (2014)

    Google Scholar 

  5. Booth, K.E.C., Tran, T.T., Nejat, J.G., Beck, C.: Mixed-integer, constraint programming techniques for mobile robot task planning. Robot. Autom. Lett. 1(1), 500–507 (2016)

    Article  Google Scholar 

  6. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Business Media, US (2012)

    MATH  Google Scholar 

  7. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  8. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program. 96(1), 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to single-mode scheduling problems. In: Proceedings MISTA 2007, Paris, pp. 276–284 (2007)

    Google Scholar 

  12. Parker, L.E.: L-alliance: task-oriented multi-robot learning in behavior-based systems. Adv. Robot. 11(4), 305–322 (1996)

    Article  Google Scholar 

  13. Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1234–1239. IEEE (1999)

    Google Scholar 

  14. Dias, M.B., Stentz, A.: Traderbots: a market-based approach for resource, role, and task allocationin multirobot coordination. Robotics Institute, Carnegie Mellon University, Pittsburgh,PA, Tech. Rep. CMU-RI-TR-03-19 (2003)

    Google Scholar 

  15. Gerkey, B.P., Matari, M.J.: Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  16. Liu, L., Michael, N., Shell, D.: Fully decentralized task swaps with optimized local searching. In: Proceedings of Robotics: Science and Systems (2014)

    Google Scholar 

  17. Korsah, G.A., Kannan, B., Browning, B., Stentz, A., Dias, M.B.: xbots: an approach to generating and executing optimal multi-robot plans with cross-schedule dependencies. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 115–122. IEEE (2012)

    Google Scholar 

  18. Van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming. ACM Comput. Sur. (CSUR) 28(4), 701–726 (1996)

    Article  MATH  Google Scholar 

  19. Nareyek, A., Freuder, E.C., Fourer, R., Giunchiglia, E., Goldman, R.P., Kautz, H., Rintanen, J., Tate, A.: Constraints and AI planning. IEEE Intell. Syst. 20(2), 62–72 (2005)

    Article  Google Scholar 

  20. Goldman, R.P., Haigh, K.Z., Musliner, D.J., Pelican, M.J.S.: Macbeth: a multi-agent constraint-based planner [autonomous agent tactical planner]. In: Proceedings of the 21st Digital Avionics Systems Conference, vol. 2, p. 7E3-1. IEEE (2002)

    Google Scholar 

  21. Doniec, A., Bouraqadi, N., Defoort, M., Le, V.T., Stinckwich, S.: Distributed constraint reasoning applied to multi-robot exploration. In: 21st International Conference on Tools with Artificial Intelligence, ICTAI 2009, pp. 159–166. IEEE (2009)

    Google Scholar 

  22. Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)

    Article  Google Scholar 

  23. Vaquero, T., Mohamed, S.C., Nejat, G., Beck, J.C.: The implementation of a planning and scheduling architecture for multiple robots assisting multiple users in a retirement home setting. In: Artificial Intelligence Applied to Assistive Technologies and Smart Environments (AAAI 2015) (2015)

    Google Scholar 

  24. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 148–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

    Article  Google Scholar 

  26. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  27. Drexl, M.: Synchronization in vehicle routing-a survey of VRPS with multiple synchronization constraints. Transp. Sci. 46(3), 297–316 (2012)

    Article  Google Scholar 

  28. Louie, W.-Y.G., Li, J., Vaquero, T., Nejat, G.: A focus group study on the design considerations, impressions of a socially assistive robot for long-term care. In: 2014 RO-MAN: The 23rd IEEE International Symposium on Robot, Human Interactive Communication, pp. 237–242. IEEE (2014)

    Google Scholar 

  29. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J. Math. Mod. Algorithms 8(3), 245–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Booth, K.E.C., Tran, T.T., Beck, J.C.: Logic-based decomposition methods for the travelling purchaser problem. In: Quimper, C.-G., Cavallo, M. (eds.) CPAIOR 2016. LNCS, vol. 9676, pp. 55–64. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33954-2_5

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Natural Sciences & Engineering Research Council of Canada (NSERC), Dr. Robot Inc., and the Canada Research Chairs (CRC) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle E. C. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Booth, K.E.C., Nejat, G., Beck, J.C. (2016). A Constraint Programming Approach to Multi-Robot Task Allocation and Scheduling in Retirement Homes. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics