Skip to main content

Robust Low Rank Trajectories

  • Chapter
  • First Online:
Optical Flow and Trajectory Estimation Methods

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 977 Accesses

Abstract

In this chapter we show how sparse constraints can be used to improve trajectories. We apply sparsity as a low rank constraint to trajectories via a robust coupling. We compute trajectories from an image sequence. Sparsity in trajectories is measured by matrix rank. We introduce a low rank constraint of linear complexity using random subsampling of the data and demonstrate that, by using a robust coupling with the low rank constraint, our approach outperforms baseline methods on general image sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MPI Sintel Flow Dataset. http://sintel.is.tue.mpg.de/, 2014

  2. S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, R. Szeliski, A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  3. M. Black, Recursive non-linear estimation of discontinuous flow fields, in Computer Vision—ECCV’94, pp. 138–145 (1994)

    Google Scholar 

  4. M.J. Black, P. Anandan, Robust dynamic motion estimation over time, in Proceedings of Computer Vision and Pattern Recognition, CVPR-91, pp. 296–302 (1991)

    Google Scholar 

  5. T. Brox, J. Malik, Large Displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  6. D.J. Butler, J. Wulff, G.B. Stanley, M.J. Black, A naturalistic open source movie for optical flow evaluation, in European Conference on Computer Vision (ECCV), pp. 611–625 (2012)

    Google Scholar 

  7. J. Cai, E. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion. SIAM J. Optim. pp. 1–26 (2010)

    Google Scholar 

  8. L. Condat, A generic proximal algorithm for convex optimization—application to total variation minimization. Signal Process. Lett. IEEE 21(8), 985–989 (2014)

    Article  Google Scholar 

  9. R. Garg, A. Roussos, L. Agapito, A variational approach to video registration with subspace constraints. Int. J. Comput. Vis. 104, 286–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Gibson, O. Marques, Sparse regularization of TV-L1 optical flow, in ICISP 2014, vol. LNCS, 8509 of Image and Signal Processing, ed. by A. Elmoataz, O. Lezoray, F. Nouboud, D. Mammass (Springer, Cherbourg, France, 2014), pp. 460–467

    Google Scholar 

  11. J. Gibson, O. Marques, Sparsity in optical flow and trajectories. Image Video Process. Signal, 1–8 (2015)

    Google Scholar 

  12. M. Irani, Multi-frame correspondence estimation using subspace constraints. Int. J. Comput. Vis. 48(153), 173–194 (2002)

    Article  MATH  Google Scholar 

  13. R. Liu, Z. Lin, Z. Su, J. Gao, Linear time principal component pursuit and its extensions using \(\ell _1\) filtering. Neurocomputing 142, 529–541 (2014)

    Article  Google Scholar 

  14. D. Murray, B.F. Buxton, Scene segmentation from visual motion using global optimization. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(March), 220–228 (1987)

    Google Scholar 

  15. H.H. Nagel. Extending the ‘oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow, in Proceedings of the First European Conference on Computer Vision (Springer, New York, Inc., 1990), pp. 139–148

    Google Scholar 

  16. T. Nir, A.M. Bruckstein, R. Kimmel, Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2007)

    Article  Google Scholar 

  17. D. Pizarro, A. Bartoli, Feature-based deformable surface detection with self-occlusion reasoning. Int. J. Comput. Vis. 97(1), 54–70 (2011)

    Article  MATH  Google Scholar 

  18. S. Ricco, C. Tomasi. Dense lagrangian motion estimation with occlusions, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1800–1807 (2012)

    Google Scholar 

  19. S. Ricco, C. Tomasi, Video motion for every visible point, in International Conference on Computer Vision (ICCV), number i (2013)

    Google Scholar 

  20. P. Sand, S. Teller, Particle video: long-range motion estimation using point trajectories. Int. J. Comput. Vis. 80(1), 72–91 (2008)

    Article  Google Scholar 

  21. S. Volz, A. Bruhn, L. Valgaerts, H. Zimmer, Modeling temporal coherence for optical flow, in 2011 International Conference on Computer Vision (ICCV), pp. 1116–1123 (2011)

    Google Scholar 

  22. A. Wedel, T. Pock, C. Zach, H. Bischof, D. Cremers, An improved algorithm for TV-L 1 optical flow, in Statistical and Geometrical Approaches to Visual Motion Analysis, pp. 23–45 (Springer Berlin, Heidelberg, 2009)

    Google Scholar 

  23. J. Weickert, C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 245–255 (2001)

    Google Scholar 

  24. J. Wright, P. Yigang, Y. Ma, A. Ganesh, S. Rao, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in NIPS, pp. 1–9 (2009)

    Google Scholar 

  25. X. Yuan, J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods. Optimization (Online), 1–11 (2009)

    Google Scholar 

  26. H. Zimmer, A. Bruhn, J. Weickert, Optic flow in harmony. Int. J. Comput. Vis. 93(3), 368–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Gibson .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Gibson, J., Marques, O. (2016). Robust Low Rank Trajectories. In: Optical Flow and Trajectory Estimation Methods. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-44941-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44941-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44940-1

  • Online ISBN: 978-3-319-44941-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics