Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Signal processing plays a significant role in building any condition monitoring system. Many types of signals can be used in the condition monitoring of machines, such as vibration signals as in this research; and processing these signals in an appropriate way is crucial in extracting the most salient features related to different fault types. A number of signal processing techniques can fulfil this purpose, and the nature of the captured signal is a significant factor in the selection of the appropriate technique. This chapter starts with a discussion of the proposed robot condition monitoring algorithm. Then, a consideration of the signal processing techniques which can be applied in condition monitoring is carried out to identify their advantages and disadvantages, from which the time-domain and discrete wavelet transform signal analysis are selected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Kazzaz, S. A. S., & Singh, G. K. (2003). Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques. Electric Power Systems Research, 65, 197–221.

    Article  Google Scholar 

  • Al-Badour, F., Sunar, M., & Cheded, L. (2011). Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing, 25, 2083–2101.

    Article  Google Scholar 

  • Bicker, R., Daadbin, A., & Rosinski, J. (1989). The monitoring of vibration in industrial robots. In ASME 12th Biennial Conference on Mechanical Vibration and Noise, 1989.

    Google Scholar 

  • Bouzid, O. M. (2013). In-situ health monitoring for wind turbine blade using acoustic wireless sensor networks at low sampling rates. PhD Thesis, Newcastle University.

    Google Scholar 

  • Chen, C. Y., Ke, M. D., & Kuo, C. D. (2009). Continuous wavelet transformation the wavelet implemented on a DSP chip for EEG monitoring. 3633–3636.

    Google Scholar 

  • Debdas, S., Quereshi, M. F., Reddy, A., Chandrakar, D., & Pansari, D. (2011). A Wavelet based multiresolution analysis for real time condition monitoring of AC machine using vibration analysis. International Journal of Scientific and Engineering Research, 2.

    Google Scholar 

  • Elbarghathi, F., Wang, T., Zhen, D., Gu, F., & Ball, A. (2012). Two stage helical gearbox fault detection and diagnosis based on continuous wavelet transformation of time synchronous averaged vibration signals. Journal of Physics: Conference Series, 364.

    Google Scholar 

  • Engin, S. N., Gulez, K., & Badi, M. N. M. (1999). Advanced signal processing techniques for fault diagnostics—a review. Mathematical and Computational Applications, 4, 121–136.

    Article  Google Scholar 

  • Figliola, R. S., & Beasley, D. E. (2011). Theory and design for mechanical measurements. New York: Wiley.

    Google Scholar 

  • Gao, R. X., & Yan, R. (2011). From fourier transform to wavelet transform: A historical perspective. Wavelets: Springer.

    Google Scholar 

  • Ghafari, S. H. (2007). A fault diagnosis system for rotary machinery supported by rolling element bearings. Waterloo: Doctor of Philosophy.

    Google Scholar 

  • Ghods, A., & Lee, H. H. (2014). A frequency-based approach to detect bearing faults in induction motors using discrete wavelet transform. In Proceedings of the IEEE International Conference on Industrial Technology (pp. 121–125).

    Google Scholar 

  • Giaouris, D., Zahawi, B., El-Murr, G., & Pickert, V. (2006) Application of wavelet transformation for the identification of high frequency spurious signals in step down DC–DC converter circuits experiencing intermittent chaotic patterns. In The 3rd IET International Conference on Power Electronics, Machines and Drives (pp. 394–397), 4–6 April 2006.

    Google Scholar 

  • Harpen, M. D. (1998). An introduction to wavelet theory and application for the radiological physicist. Medical Physics, 25, 1985–1993.

    Article  Google Scholar 

  • He, J. (2001). Modal analysis, Oxford Boston. OxfordBoston: Butterworth-Heinemann.

    Google Scholar 

  • Hsieh, W. H., Lu, M. C., & Chiou, S. J. (2012). Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling. International Journal of Advanced Manufacturing Technology, 61, 53–61.

    Article  Google Scholar 

  • Iorgulescu, M., Beloiu, R., & Cazacu, D. (2009). Vibration monitoring for electrical equipment faults detection using fast fourier transform. 2009. 34–38.

    Google Scholar 

  • Kamiel, B., McKee, K., Entwistle, R., Mazhar, I., & Howard, I. (2015). Multi fault diagnosis of the centrifugal pump using the wavelet transform and principal component analysis. Mechanisms and Machine Science, 555–566.

    Google Scholar 

  • Kankar, P. K., Sharma, S. C., & Harsha, S. P. (2011). Fault diagnosis of ball bearings using continuous wavelet transform. Applied Soft Computing Journal, 11, 2300–2312.

    Article  Google Scholar 

  • Karthikeyan, P., Murugappan, M., & Yaacob, S. (2012). ECG signal denoising using wavelet thresholding techniques in human stress assessment. International Journal on Electrical Engineering and Informatics, 4, 306–319.

    Article  Google Scholar 

  • Kehtarnavaz, N. (2008). Digital signal processing system design: LabVIEW-based hybrid programming. Amsterdam: Elsevier.

    Google Scholar 

  • Kim, E. Y., Tan, A. C. C., Yang, B.-S., & Kosse1, V. (2007). Experimental study on condition monitoring of low speed bearings: Time domain analysis. In 5th Australasian Congress on Applied Mechanics.

    Google Scholar 

  • Leavey, C. M., James, M. N., Summerscales, J., & Sutton, R. (2003). An introduction to wavelet transforms: A tutorial approach. Insight: Non-Destructive Testing and Condition Monitoring, 45, 344–353.

    Article  Google Scholar 

  • Li, C. J. (2006). Signal processing in manufacturing monitoring. Condition monitoring and control for intelligent manufacturing. London: Springer.

    Google Scholar 

  • Li, R., & Frogley, M. (2013). On-line fault detection in wind turbine transmission system using adaptive filter and robust statistical features. International Journal of Prognostics and Health Management, 4.

    Google Scholar 

  • Lihui, W., & Gao, R. X. (2006). Condition monitoring and control for intelligent manufacturing. London: Springer.

    Google Scholar 

  • Loutas, T., & Kostopoulos, V. (2012). Utilising the wavelet transform in condition-based maintenance: A review with applications. In BALEANU, D. (ed.).

    Google Scholar 

  • Marwala, T. (2012). Condition monitoring using computational intelligence methods. London: Springer.

    Book  Google Scholar 

  • Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J.-M. (1997). Wavelet toolbox for use with MATLAB, MathWorks.

    Google Scholar 

  • Mohanty, A. R. (2015). Machinery condition monitoring: Principles and practices. London: Taylor & Francis Group.

    Google Scholar 

  • Ngolah, C. F., Morden, E., & Wang, Y. (2011). An intelligent fault recognizer for rotating machinery via remote characteristic vibration signal detection. 2011. 135–143.

    Google Scholar 

  • Ngui, W. K., Leong, M. S., Hee, L. M., & Abdelrhman, A. M. (2013). Wavelet analysis: Mother wavelet selection methods. Applied Mechanics and Materials.

    Google Scholar 

  • Onsy, A. (2009). Intelligent health monitoring of power transmission systems. Ph.D Thesis, Newcastle upon Tyne.

    Google Scholar 

  • Pan, M. C., Van Brussel, H., & Sas, P. (1998). Intelligent joint fault diagnosis of industrial robots. Mechanical Systems and Signal Processing, 12, 571–588.

    Article  Google Scholar 

  • Polikar, R. (1996). The wavelet tutorial. United States: Rowan University.

    Google Scholar 

  • Qiu, H., Lee, J., Lin, J., & Yu, G. (2003). Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Advanced Engineering Informatics, 17, 127–140.

    Article  Google Scholar 

  • Qu, J., Zhang, Z., & Gong, T. (2016). A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing, 171, 837–853.

    Article  Google Scholar 

  • Rajbhandari, S. (2009). Application of wavelets and artificial neural network for indoor optical wireless communication systems. PhD PhD Thesis, University of Northumbria at Newcastle.

    Google Scholar 

  • Sawicki, J. T., Sen, A. K., & Litak, G. (2009). Multiresolution wavelet analysis of the dynamics of a cracked rotor. International Journal of Rotating Machinery, 2009.

    Google Scholar 

  • Shin, K., & Hammond, J. K. (2008). Fundamentals of signal processing for sound and vibration engineers. New York: Wiley.

    Google Scholar 

  • Tse, P. W., Yang, W. X., & Tam, H. Y. (2004). Machine fault diagnosis through an effective exact wavelet analysis. Journal of Sound and Vibration, 277, 1005–1024.

    Article  Google Scholar 

  • Tseng, C. L., Wang, S. Y., Lin, S. C., Chou, J. H., & Chen, K. F. (2014). A diagnostic system for speed-varying motor rotary faults. Mathematical Problems in Engineering, 2014.

    Google Scholar 

  • Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis and prognostic for engineering systems. New York: Wiley.

    Book  Google Scholar 

  • Vivas, E. L. A., Garcia-Gonzalez, A., Figueroa, I., & Fuentes, R. Q. (2013). Discrete wavelet transform and ANFIS classifier for brain-machine interface based on EEG. In 2013 6th International Conference on Human System Interactions, HSI 2013 (pp. 137–144), 2013.

    Google Scholar 

  • Wilkinson, M. R. (2008). Condition monitoring for offshore wind turbines Eng. D., University of Newcastle upon Tyne.

    Google Scholar 

  • Williams, T., Ribadeneira, X., Billington, S., & Kurfess, T. (2001). Rolling element bearing diagnostics in run-to-failure lifetime testing. Mechanical Systems and Signal Processing, 15, 979–993.

    Article  Google Scholar 

  • Zhen, C., & Zhang, Y. (2012). Fault diagnosis for wind turbines based on vibration signal analysis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Abdulhady Jaber .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaber, A.A. (2017). Signal Processing Techniques for Condition Monitoring. In: Design of an Intelligent Embedded System for Condition Monitoring of an Industrial Robot. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44932-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44932-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44931-9

  • Online ISBN: 978-3-319-44932-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics